Electronic Correlation and Geometrical Frustration in Molecular Solids -- A Systematic ab initio Study of $beta^prime$-$X$[Pd(dmit)$_{2}$]$_{2}$


Abstract in English

We systematically derive low-energy effective Hamiltonians for molecular solids $beta^prime$-$X$[Pd(dmit)$_{2}$]$_{2}$ ($X$ represents a cation) using ab initio density functional theory calculations and clarify how the cation controls the inter-dimer transfer integrals and the interaction parameters. The effective models are solved using the exact diagonalization method and the antiferromagnetic ordered moment is shown to be significantly suppressed around the spin-liquid candidate of $X$=EtMe$_{3}$Sb, which is reported in experiments. We also show that both the geometrical frustration and the off-site interactions play essential roles in the suppression of antiferromagnetic ordering. This systematic derivation and analysis of the low-energy effective Hamiltonians offer a firm basis to clarify the nature of the quantum spin liquid found in $beta^prime$-EtMe$_{3}$Sb[Pd(dmit)$_{2}$]$_{2}$.

Download