No Arabic abstract
Reproducing the diverse and agile locomotion skills of animals has been a longstanding challenge in robotics. While manually-designed controllers have been able to emulate many complex behaviors, building such controllers involves a time-consuming and difficult development process, often requiring substantial expertise of the nuances of each skill. Reinforcement learning provides an appealing alternative for automating the manual effort involved in the development of controllers. However, designing learning objectives that elicit the desired behaviors from an agent can also require a great deal of skill-specific expertise. In this work, we present an imitation learning system that enables legged robots to learn agile locomotion skills by imitating real-world animals. We show that by leveraging reference motion data, a single learning-based approach is able to automatically synthesize controllers for a diverse repertoire behaviors for legged robots. By incorporating sample efficient domain adaptation techniques into the training process, our system is able to learn adaptive policies in simulation that can then be quickly adapted for real-world deployment. To demonstrate the effectiveness of our system, we train an 18-DoF quadruped robot to perform a variety of agile behaviors ranging from different locomotion gaits to dynamic hops and turns.
We consider the problem of learning useful robotic skills from previously collected offline data without access to manually specified rewards or additional online exploration, a setting that is becoming increasingly important for scaling robot learning by reusing past robotic data. In particular, we propose the objective of learning a functional understanding of the environment by learning to reach any goal state in a given dataset. We employ goal-conditioned Q-learning with hindsight relabeling and develop several techniques that enable training in a particularly challenging offline setting. We find that our method can operate on high-dimensional camera images and learn a variety of skills on real robots that generalize to previously unseen scenes and objects. We also show that our method can learn to reach long-horizon goals across multiple episodes through goal chaining, and learn rich representations that can help with downstream tasks through pre-training or auxiliary objectives. The videos of our experiments can be found at https://actionable-models.github.io
Reinforcement learning provides a general framework for learning robotic skills while minimizing engineering effort. However, most reinforcement learning algorithms assume that a well-designed reward function is provided, and learn a single behavior for that single reward function. Such reward functions can be difficult to design in practice. Can we instead develop efficient reinforcement learning methods that acquire diverse skills without any reward function, and then repurpose these skills for downstream tasks? In this paper, we demonstrate that a recently proposed unsupervised skill discovery algorithm can be extended into an efficient off-policy method, making it suitable for performing unsupervised reinforcement learning in the real world. Firstly, we show that our proposed algorithm provides substantial improvement in learning efficiency, making reward-free real-world training feasible. Secondly, we move beyond the simulation environments and evaluate the algorithm on real physical hardware. On quadrupeds, we observe that locomotion skills with diverse gaits and different orientations emerge without any rewards or demonstrations. We also demonstrate that the learned skills can be composed using model predictive control for goal-oriented navigation, without any additional training.
Designing agile locomotion for quadruped robots often requires extensive expertise and tedious manual tuning. In this paper, we present a system to automate this process by leveraging deep reinforcement learning techniques. Our system can learn quadruped locomotion from scratch using simple reward signals. In addition, users can provide an open loop reference to guide the learning process when more control over the learned gait is needed. The control policies are learned in a physics simulator and then deployed on real robots. In robotics, policies trained in simulation often do not transfer to the real world. We narrow this reality gap by improving the physics simulator and learning robust policies. We improve the simulation using system identification, developing an accurate actuator model and simulating latency. We learn robust controllers by randomizing the physical environments, adding perturbations and designing a compact observation space. We evaluate our system on two agile locomotion gaits: trotting and galloping. After learning in simulation, a quadruped robot can successfully perform both gaits in the real world.
Acquiring multiple skills has commonly involved collecting a large number of expert demonstrations per task or engineering custom reward functions. Recently it has been shown that it is possible to acquire a diverse set of skills by self-supervising control on top of human teleoperated play data. Play is rich in state space coverage and a policy trained on this data can generalize to specific tasks at test time outperforming policies trained on individual expert task demonstrations. In this work, we explore the question of whether robots can learn to play to autonomously generate play data that can ultimately enhance performance. By training a behavioral cloning policy on a relatively small quantity of human play, we autonomously generate a large quantity of cloned play data that can be used as additional training. We demonstrate that a general purpose goal-conditioned policy trained on this augmented dataset substantially outperforms one trained only with the original human data on 18 difficult user-specified manipulation tasks in a simulated robotic tabletop environment. A video example of a robot imitating human play can be seen here: https://learning-to-play.github.io/videos/undirected_play1.mp4
Parameterized movement primitives have been extensively used for imitation learning of robotic tasks. However, the high-dimensionality of the parameter space hinders the improvement of such primitives in the reinforcement learning (RL) setting, especially for learning with physical robots. In this paper we propose a novel view on handling the demonstrated trajectories for acquiring low-dimensional, non-linear latent dynamics, using mixtures of probabilistic principal component analyzers (MPPCA) on the movements parameter space. Moreover, we introduce a new contextual off-policy RL algorithm, named LAtent-Movements Policy Optimization (LAMPO). LAMPO can provide gradient estimates from previous experience using self-normalized importance sampling, hence, making full use of samples collected in previous learning iterations. These advantages combined provide a complete framework for sample-efficient off-policy optimization of movement primitives for robot learning of high-dimensional manipulation skills. Our experimental results conducted both in simulation and on a real robot show that LAMPO provides sample-efficient policies against common approaches in literature.