Do you want to publish a course? Click here

Realization of the orbital-selective Mott state at the molecular level in Ba$_3$LaRu$_2$O$_9$

101   0   0.0 ( 0 )
 Added by Adam Aczel
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Molecular magnets based on heavy transition metals have recently attracted significant interest in the quest for novel magnetic properties. For systems with an odd number of valence electrons per molecule, high or low molecular spin states are typically expected in the double exchange or quasi-molecular orbital limits respectively. In this work, we use bulk characterization, muon spin relaxation, neutron diffraction, and inelastic neutron scattering to identify a rare intermediate spin-3/2 per dimer state in the 6H-perovskite Ba$_3$LaRu$_2$O$_9$ that cannot be understood in a double exchange or quasi-molecular orbital picture and instead arises from orbital-selective Mott insulating behavior at the molecular level. Our measurements are also indicative of collinear stripe magnetic order below $T_N$ = 26(1) K for these molecular spin-3/2 degrees-of-freedom, which is consistent with expectations for an ideal triangular lattice with significant next nearest neighbor in-plane exchange. Finally, we present neutron diffraction and Raman scattering data under applied pressure that reveal low-lying structural and spin state transitions at modest pressures P $le$ 1 GPa, which highlights the delicate balance between competing energy scales in this system.



rate research

Read More

Structure with orbital degeneracy is unstable toward spontaneous distortion. Such orbital correlation usually has a much higher energy scale than spins, and therefore, magnetic transition takes place at a much lower temperature, almost independently from orbital ordering. However, when the energy scales of orbitals and spins meet, there is a possibility of spin-orbital entanglement that would stabilize novel ground state such as spin-orbital liquid and random singlet state. Here we review on such a novel spin-orbital magnetism found in the hexagonal perovskite oxide Ba$_3$CuSb$_2$O$_9$, which hosts a self-organized honeycomblike short-range order of a strong Jahn-Teller ion Cu$^{2+}$. Comprehensive structural and magnetic measurements have revealed that the system has neither magnetic nor Jahn-Teller transition down to the lowest temperatures, and Cu spins and orbitals retain the hexagonal symmetry and paramagnetic state. Various macroscopic and microscopic measurements all indicate that spins and orbitals remain fluctuating down to low temperatures without freezing, forming a spin-orbital entangled liquid state.
Recent experiments on the Ba$_3$XSb$_2$O$_9$ family have revealed materials that potentially realise spin- and spin-orbital liquid physics. However, the lattice structure of these materials is complicated due to the presence of charged X$^{2+}$-Sb$^{5+}$ dumbbells, with two possible orientations. To model the lattice structure, we consider a frustrated model of charged dumbbells on the triangular lattice, with long-range Coulomb interactions. We study this model using Monte Carlo simulation, and find a freezing temperature, $T_{sf frz}$, at which the simulated structure factor matches well to low-temperature x-ray diffraction data for Ba$_3$CuSb$_2$O$_9$. At $T=T_{sf frz}$ we find a complicated ``branching structure of superexchange-linked X$^{2+}$ clusters, and show that this gives a natural explanation for the presence of orphan spins. Finally we provide a plausible mechanism by which such dumbbell disorder can promote a spin-orbital resonant state with delocalised orphan spins.
Both the Jahn-Teller distortion of Cu$^{2+}$O$_6$ octahedra and magnetic ordering are absent in hexagonal Ba$_3$CuSb$_2$O$_9$ suggesting a Cu 3$d$ spin-orbital liquid state. Here, by means of resonant x-ray scattering and absorption experiment, we show that oxygen 2$p$ holes play crucial role in stabilizing this spin-orbital liquid state. These oxygen holes appear due to the reaction Sb$^{5+}$$rightarrow$Sb$^{3+}$ $+$ two oxygen holes, with these holes being able to attach to Cu ions. The hexagonal phase with oxygen 2$p$ holes exhibits also a novel charge-orbital dynamics which is absent in the orthorhombic phase of Ba$_3$CuSb$_2$O$_9$ with Jahn-Teller distortion and Cu 3$d$ orbital order. The present work opens up a new avenue towards spin-charge-orbital entangled liquid state in transition-metal oxides with small or negative charge transfer energy.
The absence of both spin freezing and of a static Jahn-Teller effect have lead to the proposition that Ba$_3$CuSb$_2$O$_9$ is a quantum spin-orbital liquid. However, theoretical understanding of the microscopic origin of this behavior has been hampered by a lack of consensus on the lattice structure. Cu ions have been proposed to realize either a triangular lattice, a short-range ordered honeycomb lattice or a disordered lattice with stripelike correlations. Here we analyze the stability of idealiz
Strong spin-orbit coupling (SOC) effects of heavy $d$-orbital elements have long been neglected in describing the ground states of their compounds thereby overlooking a variety of fascinating and yet unexplored magnetic and electronic states, until recently. The spin-orbit entangled electrons in such compounds can get stabilized into unusual spin-orbit multiplet $J$-states which warrants severe investigations. Here we show using detailed magnetic and thermodynamic studies and theoretical calculations the ground state of Ba$_3$ZnIr$_2$O$_9$, a 6$H$ hexagonal perovskite is a close realisation of the elusive $J$~=~0 state. However, we find that local Ir moments are spontaneously generated due to the comparable energy scales of the singlet-triplet splitting driven by SOC and the superexchange interaction mediated by strong intra-dimer hopping. While the Ir ions within the structural Ir$_2$O$_9$ dimer prefers to form a spin-orbit singlet state (SOS) with no resultant moment, substantial interdimer exchange interactions from a frustrated lattice ensure quantum fluctuations till the lowest measured temperatures and stabilize a spin-orbital liquid phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا