No Arabic abstract
Attributes and objects can compose diverse compositions. To model the compositional nature of these general concepts, it is a good choice to learn them through transformations, such as coupling and decoupling. However, complex transformations need to satisfy specific principles to guarantee the rationality. In this paper, we first propose a previously ignored principle of attribute-object transformation: Symmetry. For example, coupling peeled-apple with attribute peeled should result in peeled-apple, and decoupling peeled from apple should still output apple. Incorporating the symmetry principle, a transformation framework inspired by group theory is built, i.e. SymNet. SymNet consists of two modules, Coupling Network and Decoupling Network. With the group axioms and symmetry property as objectives, we adopt Deep Neural Networks to implement SymNet and train it in an end-to-end paradigm. Moreover, we propose a Relative Moving Distance (RMD) based recognition method to utilize the attribute change instead of the attribute pattern itself to classify attributes. Our symmetry learning can be utilized for the Compositional Zero-Shot Learning task and outperforms the state-of-the-art on widely-used benchmarks. Code is available at https://github.com/DirtyHarryLYL/SymNet.
We study the problem of learning how to predict attribute-object compositions from images, and its generalization to unseen compositions missing from the training data. To the best of our knowledge, this is a first large-scale study of this problem, involving hundreds of thousands of compositions. We train our framework with images from Instagram using hashtags as noisy weak supervision. We make careful design choices for data collection and modeling, in order to handle noisy annotations and unseen compositions. Finally, extensive evaluations show that learning to compose classifiers outperforms late fusion of individual attribute and object predictions, especially in the case of unseen attribute-object pairs.
Object Transfiguration replaces an object in an image with another object from a second image. For example it can perform tasks like putting exactly those eyeglasses from image A on the nose of the person in image B. Usage of exemplar images allows more precise specification of desired modifications and improves the diversity of conditional image generation. However, previous methods that rely on feature space operations, require paired data and/or appearance models for training or disentangling objects from background. In this work, we propose a model that can learn object transfiguration from two unpaired sets of images: one set containing images that have that kind of object, and the other set being the opposite, with the mild constraint that the objects be located approximately at the same place. For example, the training data can be one set of reference face images that have eyeglasses, and another set of images that have not, both of which spatially aligned by face landmarks. Despite the weak 0/1 labels, our model can learn an eyeglasses subspace that contain multiple representatives of different types of glasses. Consequently, we can perform fine-grained control of generated images, like swapping the glasses in two images by swapping the projected components in the eyeglasses subspace, to create novel images of people wearing eyeglasses. Overall, our deterministic generative model learns disentangled attribute subspaces from weakly labeled data by adversarial training. Experiments on CelebA and Multi-PIE datasets validate the effectiveness of the proposed model on real world data, in generating images with specified eyeglasses, smiling, hair styles, and lighting conditions etc. The code is available online.
We explore object detection with two attributes: color and material. The task aims to simultaneously detect objects and infer their color and material. A straight-forward approach is to add attribute heads at the very end of a usual object detection pipeline. However, we observe that the two goals are in conflict: Object detection should be attribute-independent and attributes be largely object-independent. Features computed by a standard detection network entangle the category and attribute features; we disentangle them by the use of a two-stream model where the category and attribute features are computed independently but the classification heads share Regions of Interest (RoIs). Compared with a traditional single-stream model, our model shows significant improvements over VG-20, a subset of Visual Genome, on both supervised and attribute transfer tasks.
Fashion attribute classification is of great importance to many high-level tasks such as fashion item search, fashion trend analysis, fashion recommendation, etc. The task is challenging due to the extremely imbalanced data distribution, particularly the attributes with only a few positive samples. In this paper, we introduce a hard-aware pipeline to make full use of hard samples/attributes. We first propose Hard-Aware BackPropagation (HABP) to efficiently and adaptively focus on training hard data. Then for the identified hard labels, we propose to synthesize more complementary samples for training. To stabilize training, we extend semi-supervised GAN by directly deactivating outputs for synthetic complementary samples (Deact). In general, our method is more effective in addressing hard cases. HABP weights more on hard samples. For hard attributes with insufficient training data, Deact brings more stable synthetic samples for training and further improve the performance. Our method is verified on large scale fashion dataset, outperforming other state-of-the-art without any additional supervisions.
In recent years, deep learning methods bring incredible progress to the field of object detection. However, in the field of remote sensing image processing, existing methods neglect the relationship between imaging configuration and detection performance, and do not take into account the importance of detection performance feedback for improving image quality. Therefore, detection performance is limited by the passive nature of the conventional object detection framework. In order to solve the above limitations, this paper takes adaptive brightness adjustment and scale adjustment as examples, and proposes an active object detection method based on deep reinforcement learning. The goal of adaptive image attribute learning is to maximize the detection performance. With the help of active object detection and image attribute adjustment strategies, low-quality images can be converted into high-quality images, and the overall performance is improved without retraining the detector.