Do you want to publish a course? Click here

Existence theory and qualitative analysis for a fully cross-diffusive predator-prey system

66   0   0.0 ( 0 )
 Added by Youshan Tao
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This manuscript considers a Neumann initial-boundary value problem for the predator-prey system $$ left{ begin{array}{l} u_t = D_1 u_{xx} - chi_1 (uv_x)_x + u(lambda_1-u+a_1 v), [1mm] v_t = D_2 v_{xx} + chi_2 (vu_x)_x + v(lambda_2-v-a_2 u), end{array} right. qquad qquad (star) $$ in an open bounded interval $Omega$ as the spatial domain, where for $iin{1,2}$ the parameters $D_i, a_i, lambda_i$ and $chi_i$ are positive. Due to the simultaneous appearance of two mutually interacting taxis-type cross-diffusive mechanisms, one of which even being attractive, it seems unclear how far a solution theory can be built upon classical results on parabolic evolution problems. In order to nevertheless create an analytical setup capable of providing global existence results as well as detailed information on qualitative behavior, this work pursues a strategy via parabolic regularization, in the course of which ($star$) is approximated by means of certain fourth-order problems involving degenerate diffusion operators of thin film type. During the design thereof, a major challenge is related to the ambition to retain consistency with some fundamental entropy-like structures formally associated with ($star$); in particular, this will motivate the construction of an approximation scheme including two free parameters which will finally be fixed in different ways, depending on the size of $lambda_2$ relative to $a_2 lambda_1$.



rate research

Read More

We construct exact solutions for a system of two nonlinear partial differential equations describing the spatio-temporal dynamics of a predator-prey system where the prey per capita growth rate is subject to the Allee effect. Using the $big(frac{G}{G}big)$ expansion method, we derive exact solutions to this model for two different wave speeds. For each wave velocity we report three different forms of solutions. We also discuss the biological relevance of the solutions obtained.
288 - Yu-Shuo Chen 2020
We investigate the traveling wave solutions of a three-species system involving a single predator and a pair of strong-weak competing preys. Our results show how the predation may affect this dynamics. More precisely, we describe several situations where the environment is initially inhabited by the predator and by either one of the two preys. When the weak competing prey is an aboriginal species, we show that there exist traveling waves where the strong prey invades the environment and either replaces its weak counterpart, or more surprisingly the three species eventually co-exist. Furthermore, depending on the parameters, we can also construct traveling waves where the weaker prey actually invades the environment initially inhabited by its strong competitor and the predator. Finally, our results on the existence of traveling waves are sharp, in the sense that we find the minimal wave speed in all those situations.
In this manuscript, we consider temporal and spatio-temporal modified Holling-Tanner predator-prey models with predator-prey growth rate as a logistic type, Holling type II functional response and alternative food sources for the predator. From our result of the temporal model, we identify regions in parameter space in which Turing instability in the spatio-temporal model is expected and we show numerical evidence where the Turing instability leads to spatio-temporal periodic solutions. Subsequently, we analyse these instabilities. We use simulations to illustrate the behaviour of both the temporal and spatio-temporal model.
103 - Wonhyung Choi 2021
We are concerned with the persistence of both predator and prey in a diffusive predator-prey system with a climate change effect, which is modeled by a spatial-temporal heterogeneity depending on a moving variable. Moreover, we consider both the cases of nonlocal and local dispersal. In both these situations, we first prove the existence of forced waves, which are positive stationary solutions in the moving frames of the climate change, of either front or pulse type. Then we address the persistence or extinction of the prey and the predator separately in various moving frames, and achieve a complete picture in the local diffusion case. We show that the survival of the species depends crucially on how the climate change speed compares with the minimal speed of some pulse type forced waves.
We consider the properties of a slow-fast prey-predator system in time and space. We first argue that the simplicity of prey-predator system is apparent rather than real and there are still many of its hidden properties that have been poorly studied or overlooked altogether. We further focus on the case where, in the slow-fast system, the prey growth is affected by a weak Allee effect. We first consider this system in the non-spatial case and make its comprehensive study using a variety of mathematical techniques. In particular, we show that the interplay between the Allee effect and the existence of multiple timescales may lead to a regime shift where small-amplitude oscillations in the population abundances abruptly change to large-amplitude oscillations. We then consider the spatially explicit slow-fast prey-predator system and reveal the effect of different time scales on the pattern formation. We show that a decrease in the timescale ratio may lead to another regime shift where the spatiotemporal pattern becomes spatially correlated leading to large-amplitude oscillations in spatially average population densities and potential species extinction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا