Majorana molecules and their spectral fingerprints


Abstract in English

We introduce the concept of a Majorana molecule, a topological bound state appearing in the geometry of a double quantum dot (QD) structure flanking a topological superconducting nanowire. We demonstrate that, if the Majorana bound states (MBSs) at opposite edges are probed nonlocally in a two probe experiment, the spectral density of the system reveals the so-called half-bowtie profiles, while Andreev bound states (ABSs) become resolved into bonding and antibonding molecular configurations. We reveal that this effect is due to the Fano interference between pseudospin superconducting pairing channels and propose that it can be catched by a pseudospin resolved Scanning Tunneling Microscope (STM)-tip.

Download