No Arabic abstract
The detection of mJy/sub-mJy point sources is a significant challenge for single-dish radio telescopes. Detection or upper limits on the faint afterglow from GRBs or other sources at cosmological distances are important means of constraining the source modeling. Using the Sardinia Radio Telescope (SRT), we compare the sensitivity and robustness of three methods applied to the detection of faint radio sources from raster maps around a known source position: the smart quick-look method, the source extraction method (typical of high-energy astronomy), and the fit with a 2-D Gaussian. We developed a Python code specific for the analysis of point-like radio sources applied to the SRT C-band (6.9 GHz) observations of both undetected sources (GRB afterglows of 181201A and 190114C) and the detected Galactic X-ray binary GRS 1915+105. Our comparative analysis of the different detection methods made extensive use of simulations as a useful complement to actual radio observations. The best method for the SRT data analysis is the fit with a 2-D Gaussian, as it pushes down the sensitivity limits of single-dish observations -- with respect to more traditional techniques -- to ~ 1.8 mJy, improving by ~ 40 % compared with the initial value. This analysis shows that -- especially for faint sources -- good maps of the scanned region pre- or post-outburst are essential.
The Virtual Observatory (VO) is becoming the de-facto standard for astronomical data publication. However, the number of radio astronomical archives is still low in general, and even lower is the number of radio astronomical data available through the VO. In order to facilitate the building of new radio astronomical archives, easing at the same time their interoperability with VO framework, we have developed a VO-compliant data model which provides interoperable data semantics for radio data. That model, which we call the Radio Astronomical DAta Model for Single-dish (RADAMS) has been built using standards of (and recommendations from) the International Virtual Observatory Alliance (IVOA). This article describes the RADAMS and its components, including archived entities and their relationships to VO metadata. We show that by using IVOA principles and concepts, the effort needed for both the development of the archives and their VO compatibility has been lowered, and the joint development of two radio astronomical archives have been possible. We plan to adapt RADAMS to be able to deal with interferometry data in the future.
The study of the linear and circular polarization in AGN allows one to gain detailed information about the properties of the magnetic fields in these objects. However, especially the observation of circular polarization (CP) with single-dish radio-telescopes is usually difficult because of the weak signals to be expected. Normally CP is derived as the (small) difference of two large numbers (LHC and RHC); hence an accurate calibration is absolutely necessary. Our aim is to improve the calibration accuracy to include the Stokes parameter V in the common single-dish polarimetric measurements, allowing a full Stokes study of the source under examination. A detailed study, up to the 2nd order, of the Mueller matrix elements in terms of cross-talk components allows us to reach the accuracy necessary to study circular polarization. The new calibration method has been applied to data taken at the 100-m Effelsberg radio-telescope during regular test observations of extragalactic sources at 2.8, 3.6, 6 and 11 cm. The D-terms in phase and amplitude appear very stable with time and the few known values of circular polarization have been confirmed. It is shown that, whenever a classical receiver and a multiplying polarimeter are available, the proposed calibration scheme allows one to include Stokes V in standard single-dish polarimetric observations as difference of two native circular outputs.
All the effort that the astrophysical community has put into the development of the Virtual Observatory (VO) has surpassed the non-return point: the VO is a reality today, and an initiative that will self-sustain, and to which all archival projects must adhere. We have started the design of the scientific archive for the DSS-63 70-m antenna at NASAs DSN station in Robledo de Chavela (Madrid). Here we show how we can use all VO proposed data models to build a VO-compliant single-dish, multiple-feed, radio astronomical archive data model (RADAMS) suitable for the archival needs of the antenna. We also propose an exhaustive list of Universal Content Descriptors (UCDs) and FITS keywords for all relevant metadata. We will further refine this data model with the experience that we will gain from that implementation.
For submillimeter spectroscopy with ground-based single-dish telescopes, removing noise contribution from the Earths atmosphere and the instrument is essential. For this purpose, here we propose a new method based on a data-scientific approach. The key technique is statistical matrix decomposition that automatically separates the signals of astronomical emission lines from the drift noise components in the fast-sampled (1--10 Hz) time-series spectra obtained by a position-switching (PSW) observation. Because the proposed method does not apply subtraction between two sets of noisy data (i.e., on-source and off-source spectra), it improves the observation sensitivity by a factor of $sqrt{2}$. It also reduces artificial signals such as baseline ripples on a spectrum, which may also help to improve the effective sensitivity. We demonstrate this improvement by using the spectroscopic data of emission lines toward a high-redshift galaxy observed with a 2-mm receiver on the 50-m Large Millimeter Telescope (LMT). Since the proposed method is carried out offline and no additional measurements are required, it offers an instant improvement on the spectra reduced so far with the conventional method. It also enables efficient deep spectroscopy driven by the future 50-m class large submillimeter single-dish telescopes, where fast PSW observations by mechanical antenna or mirror drive are difficult to achieve.
We present a single-dish mapping algorithm with a number of advantages over traditional techniques. (1) Our algorithm makes use of weighted modeling, instead of weighted averaging, to interpolate between signal measurements. This smooths the data, but without blurring the data beyond instrumental resolution. Techniques that rely on weighted averaging blur point sources sometimes as much as 40%. (2) Our algorithm makes use of local, instead of global, modeling to separate astronomical signal from instrumental and/or environmental signal drift along the telescopes scans. Other techniques, such as basket weaving, model this drift with simple functional forms (linear, quadratic, etc.) across the entirety of scans, limiting their ability to remove such contaminants. (3) Our algorithm makes use of a similar, local modeling technique to separate astronomical signal from radio-frequency interference (RFI), even if only continuum data are available. (4) Unlike other techniques, our algorithm does not require data to be collected on a rectangular grid or regridded before processing. (5) Data from any number of observations, overlapping or not, may be appended and processed together. (6) Any pixel density may be selected for the final image. We present our algorithm, and evaluate it using both simulated and real data. We are integrating it into the image-processing library of the Skynet Robotic Telescope Network, which includes optical telescopes spanning four continents, and now also Green Bank Observatorys 20-meter diameter radio telescope in West Virginia. Skynet serves hundreds of professional users, and additionally tens of thousands of students, of all ages. Default data products are generated on the fly, but will soon be customizable after the fact.