We compare two crystallographic phases of the low-dimensional WP$_2$ to better understand features of electron-electron and electron-phonon interactions in topological systems. The topological $beta$-phase, a Weyl semimetal with a giant magneto-resistance, shows a larger intensity of electronic Raman scattering compared to the topologically trivial $alpha$-phase. This intensity sharply drops for $T < T^* = 20$ K which evidences a crossover in the topological phase from marginal quasiparticles to a coherent low temperature regime. In contrast, the non-topological $alpha$-phase shows more pronounced signatures of electron-phonon interaction. Here there exist generally enlarged phonon linewidths and deviations from conventional anharmonicity in an intermediate temperature regime. These effects provide evidence for an interesting interplay of electronic correlations and electron-phonon coupling. Both interband and intraband electronic fluctuations are involved in these effects. Their dependence on symmetry as well as momentum conservation are critical ingredients to understand this interplay.