Do you want to publish a course? Click here

Experimental observation of a first order phase transition in a complex plasma mono-layer crystal

50   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The formation and melting of a mono-layered charged dust particle crystal in a DC glow discharge Argon plasma is studied. The nature of the melting/formation process is established as a first order phase transition from the nature of the variations in the Coulomb coupling parameter, the dust temperature, the structural order parameter and from the existence of a hysteresis behavior. Our experimental results are distinctly different from existing theoretical predictions for 2D crystals based on the KTHNY mechanism or the Grain boundary induced melting and indicate a novel mechanism that is akin to a fluctuation induced first order phase transition that has not been observed before in complex plasmas.



rate research

Read More

The observation is presented of naturally occurring pairing of particles and their cooperative drift in a two-dimensional plasma crystal. A single layer of plastic microspheres was suspended in the plasma sheath of a capacitively coupled rf discharge in argon at a low pressure of 1 Pa. The particle dynamics were studied by combining the top-view and side-view imaging of the suspension. Cross analysis of the particle trajectories allowed us to identify naturally occurring metastable pairs of particles. The lifetime of pairs was long enough for their reliable identification.
Pinned solitons are a special class of nonlinear solutions created by a supersonically moving object in a fluid. They move with the same velocity as the moving object and thereby remain pinned to the object. A well known hydrodynamical phenomenon, they have been shown to exist in numerical simulation studies but to date have not been observed experimentally in a plasma. In this paper we report the first experimental excitation of pinned solitons in a dusty (complex) plasma flowing over a charged obstacle. The experiments are performed in a {Pi} shaped Dusty Plasma Experimental (DPEx) device in which a dusty plasma is created in the background of a DC glow discharge Ar plasma using micron sized kaolin dust particles. A biased copper wire creates a potential structure that acts as a stationary charged object over which the dust fluid is made to flow at a highly supersonic speed. Under appropriate conditions nonlinear stationary structures are observed in the laboratory frame that correspond to pinned structures moving with the speed of the obstacle in the frame of the moving fluid. A systematic study is made of the propagation characteristics of these solitons by carefully tuning the flow velocity of the dust fluid by changing the height of the potential structure. It is found that the nature of the pinned solitons changes from a single humped one to a multi-humped one and their amplitudes increase with an increase of the flow velocity of the dust fluid. The experimental findings are then qualitatively compared with the numerical solutions of a model forced Korteweg de Vries (fKdV) equation.
Experimental nuclear level densities at excitation energies below the neutron threshold follow closely a constant-temperature shape. This dependence is unexpected and poorly understood. In this work, a fundamental explanation of the observed constant-temperature behavior in atomic nuclei is presented for the first time. It is shown that the experimental data portray a first-order phase transition from a superfluid to an ideal gas of non-interacting quasiparticles. Even-even, odd-$A$, and odd-odd level densities show in detail the behavior of gap- and gapless superconductors also observed in solid-state physics. These results and analysis should find a direct application to mesoscopic systems such as superconducting clusters.
Heat generated as a result of the breakdown of an adiabatic process is one of the central concepts of thermodynamics. In isolated systems, the heat can be defined as an energy increase due to transitions between distinct energy levels. Across a second-order quantum phase transition (QPT), the heat is predicted theoretically to exhibit a power-law scaling, but it is a significant challenge for an experimental observation. In addition, it remains elusive whether a power-law scaling of heat can exist for a first-order QPT. Here we experimentally observe a power-law scaling of heat in a spinor condensate when a system is linearly driven from a polar phase to an antiferromagnetic phase across a first-order QPT. We experimentally evaluate the heat generated during two non-equilibrium processes by probing the atom number on a hyperfine energy level. The experimentally measured scaling exponents agree well with our numerical simulation results. Our work therefore opens a new avenue to experimentally and theoretically exploring the properties of heat in non-equilibrium dynamics.
We present a very minimal model for baryogenesis by a dark first-order phase transition. It employs a new dark $SU(2)_{D}$ gauge group with two doublet Higgs bosons, two lepton doublets, and two singlets. The singlets act as a neutrino portal that transfer the generated asymmetry to the Standard Model. The model predicts $Delta N_text{eff} = 0.09-0.13$ detectable by future experiments as well as possible signals from exotic decays of the Higgs and $Z$ bosons and stochastic gravitational waves.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا