No Arabic abstract
We suggest a dynamical vector model of entanglement in a three qubit system based on isomorphism between $su(4)$ and $so(6)$ Lie algebras. Generalizing Plucker-type description of three-qubit local invariants we introduce three pairs of real-valued $3D$ vector (denoted here as $A_{R,I}$ , $B_{R,I}$ and $C_{R,I}$). Magnitudes of these vectors determine two- and three-qubit entanglement parameters of the system. We show that evolution of vectors $A$, $B$ , $C$ under local $SU(2)$ operations is identical to $SO(3)$ evolution of single-qubit Bloch vectors of qubits $a$, $b$ and $c$ correspondingly. At the same time, general two-qubit $su(4)$ Hamiltonians incorporating $a-b$, $a-c$ and $b-c$ two-qubit coupling terms generate $SO(6)$ coupling between vectors $A$ and $B$, $A$ and $C$, and $B$ and $C$, correspondingly. It turns out that dynamics of entanglement induced by different two-qubit coupling terms is entirely determined by mutual orientation of vectors $A$, $B$, $C$ which can be controlled by single-qubit transformations. We illustrate the power of this vector description of entanglement by solving quantum control problems involving transformations between $W$, Greenberg-Horne-Zeilinger ($GHZ$ ) and biseparable states.
Geometric quantum mechanics aims to express the physical properties of quantum systems in terms of geometrical features preferentially selected in the space of pure states. Geometric characterisations are given here for systems of one, two, and three spin-1/2 particles, drawing attention to the classification of quantum states into entanglement types.
We study the evolution of qubits amplitudes in a one-dimensional chain consisting of three equidistantly spaced noninteracting qubits embedded in an open waveguide. The study is performed in the frame of single-excitation subspace, where the only qubit in the chain is initially excited. We show that the dynamics of qubits amplitudes crucially depend on the value of $kd$, where $k$ is the wave vector, $d$ is a distance between neighbor qubits. If $kd$ is equal to an integer multiple of $pi$, then the qubits are excited to a stationary level. In this case, it is the dark states which prevent qubits from decaying to zero even though they do not contribute to the output spectrum of photon emission. For other values of $kd$ the excitations of qubits exhibit the damping oscillations which represent the vacuum Rabi oscillations in a three-qubit system. In this case, the output spectrum of photon radiation is determined by a subradiant state which has the lowest decay rate. We also investigated the case with the frequency of a central qubit being different from that of the edge qubits. In this case, the qibits decay rates can be controlled by the frequency detuning between the central and the edge qubits.
We study the degree to which quantum entanglement survives when a three-qubit entangled state is copied by using local and non-local processes, respectively, and investigate iterating quantum copying for the three-qubit system. There may exist inter-three-qubit entanglement and inter-two-qubit entanglement for the three-qubit system. We show that both local and non-local copying processes degrade quantum entanglement in the three-particle system due to a residual correlation between the copied output and the copying machine. We also show that the inter-two-qubit entanglement is preserved better than the inter-three-qubit entanglement in the local cloning process. We find that non-local cloning is much more efficient than the local copying for broadcasting entanglement, and output state via non-local cloning exhibits the fidelity better than local cloning.
A central theme in quantum information science is to coherently control an increasing number of quantum particles as well as their internal and external degrees of freedom (DoFs), meanwhile maintaining a high level of coherence. The ability to create and verify multiparticle entanglement with individual control and measurement of each qubit serves as an important benchmark for quantum technologies. To this end, genuine multipartite entanglement have been reported up to 14 trapped ions, 10 photons, and 10 superconducting qubits. Here, we experimentally demonstrate an 18-qubit Greenberger-Horne-Zeilinger (GHZ) entanglement by simultaneous exploiting three different DoFs of six photons, including their paths, polarization, and orbital angular momentum (OAM). We develop high-stability interferometers for reversible quantum logic operations between the photons different DoFs with precision and efficiencies close to unity, enabling simultaneous readout of 262,144 outcome combinations of the 18-qubit state. A state fidelity of 0.708(16) is measured, confirming the genuine entanglement of all the 18 qubits.
Quantum reservoir engineering is a powerful framework for autonomous quantum state preparation and error correction. However, traditional approaches to reservoir engineering are hindered by unavoidable coherent leakage out of the target state, which imposes an inherent trade off between achievable steady-state state fidelity and stabilization rate. In this work we demonstrate a protocol that achieves trade off-free Bell state stabilization in a qutrit-qubit system realized on a circuit-QED platform. We accomplish this by creating a purely dissipative channel for population transfer into the target state, mediated by strong parametric interactions coupling the second-excited state of a superconducting transmon and the engineered bath resonator. Our scheme achieves a state preparation fidelity of 84% with a stabilization time constant of 339 ns, leading to the lowest error-time product reported in solid-state quantum information platforms to date.