DeepReceiver: A Deep Learning-Based Intelligent Receiver for Wireless Communications in the Physical Layer


Abstract in English

A canonical wireless communication system consists of a transmitter and a receiver. The information bit stream is transmitted after coding, modulation, and pulse shaping. Due to the effects of radio frequency (RF) impairments, channel fading, noise and interference, the signal arriving at the receiver will be distorted. The receiver needs to recover the original information from the distorted signal. In this paper, we propose a new receiver model, namely DeepReceiver, that uses a deep neural network to replace the traditional receivers entire information recovery process. We design a one-dimensional convolution DenseNet (1D-Conv-DenseNet) structure, in which global pooling is used to improve the adaptability of the network to different input signal lengths. Multiple binary classifiers are used at the final classification layer to achieve multi-bit information stream recovery. We also exploit the DeepReceiver for unified blind reception of multiple modulation and coding schemes (MCSs) by including signal samples of corresponding MCSs in the training set. Simulation results show that the proposed DeepReceiver performs better than traditional step-by-step serial hard decision receiver in terms of bit error rate under the influence of various factors such as noise, RF impairments, multipath fading, cochannel interference, dynamic environment, and unified reception of multiple MCSs.

Download