Do you want to publish a course? Click here

Multiple- to single-gap superconductivity crossover in Nb$_5$Ir$_{3-x}$Pt$_x$O alloys

122   0   0.0 ( 0 )
 Added by Tian Shang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

By using mostly the muon-spin rotation/relaxation ($mu$SR) technique, we investigate the superconductivity (SC) of Nb$_5$Ir$_{3-x}$Pt$_x$O ($x = 0$ and 1.6) alloys, with $T_c = 10.5$ K and 9.1 K, respectively. At a macroscopic level, their superconductivity was studied by electrical resistivity, magnetization, and specific-heat measurements. In both compounds, the electronic specific heat and the low-temperature superfluid density data suggest a nodeless SC. The superconducting gap value and the specific heat discontinuity at $T_c$ are larger than that expected from the Bardeen-Cooper-Schrieffer theory in the weak-coupling regime, indicating strong-coupling superconductivity in the Nb$_5$Ir$_{3-x}$Pt$_x$O family. In Nb$_5$Ir$_3$O, multigap SC is evidenced by the field dependence of the electronic specific heat coefficient and the superconducting Gaussian relaxation rate, as well as by the temperature dependence of the upper critical field. Pt substitution suppresses one of the gaps, and Nb$_5$Ir$_{1.4}$Pt$_{1.6}$O becomes a single-gap superconductor. By combining our extensive experimental results, we provide evidence for a multiple- to single-gap SC crossover in the Nb$_5$Ir$_{3-x}$Pt$_x$O family.



rate research

Read More

We present the first study of thermal conductivity in superconducting SrTi$_{1-x}$Nb$_{x}$O$_{3}$, sufficiently doped to be near its maximum critical temperature. The bulk critical temperature, determined by the jump in specific heat, occurs at a significantly lower temperature than the resistive T$_{c}$. Thermal conductivity, dominated by the electron contribution, deviates from its normal-state magnitude at bulk T$_{c}$, following a Bardeen-Rickayzen-Tewordt (BRT) behavior, expected for thermal transport by Bogoliubov excitations. Absence of a T-linear term at very low temperatures rules out the presence of nodal quasi-particles. On the other hand, the field dependence of thermal conductivity points to the existence of at least two distinct superconducting gaps. We conclude that optimally-doped strontium titanate is a multigap nodeless superconductor.
The upper critical fields, $H_{c2}$($T$), of single crystals of the superconductor Ca$_{10}$(Pt$_{4-delta}$As$_{8}$)((Fe$_{0.97}$Pt$_{0.03}$)$_{2}$As$_{2}$)$_{5}$ ($delta$ $approx$ 0.246) are determined over a wide range of temperatures down to $T$ = 1.42 K and magnetic fields of up to $mu_{0}H$ $simeq$ 92 T. The measurements of anisotropic $H_{c2}$($T$) curves are performed in pulsed magnetic fields using radio-frequency contactless penetration depth measurements for magnetic field applied both parallel and perpendicular to the textbf{ab}-plane. Whereas a clear upward curvature in $H_{c2}^{paralleltextbf{c}}$($T$) along textbf{H}$parallel$textbf{c} is observed with decreasing temperature, the $H_{c2}^{paralleltextbf{ab}}$($T$) along textbf{H}$parallel$textbf{ab} shows a flattening at low temperatures. The rapid increase of the $H_{c2}^{paralleltextbf{c}}$($T$) at low temperatures suggests that the superconductivity can be described by two dominating bands. The anisotropy parameter, $gamma_{H}$ $equiv$ $H_{c2}^{paralleltextbf{ab}}/H_{c2}^{paralleltextbf{c}}$, is $sim$7 close to $T_{c}$ and decreases considerably to $sim$1 with decreasing temperature, showing rather weak anisotropy at low temperatures.
Single atom manipulation within doped correlated electron systems would be highly beneficial to disentangle the influence of dopants, structural defects and crystallographic characteristics on their local electronic states. Unfortunately, their high diffusion barrier prevents conventional manipulation techniques. Here, we demonstrate the possibility to reversibly manipulate select sites in the optimally doped high temperature superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+x}$ using the local electric field of the tip. We show that upon shifting individual Bi atoms at the surface, the spectral gap associated with superconductivity is seen to reversibly change by as much as 15 meV (~5% of the total gap size). Our toy model that captures all observed characteristics suggests the field induces lateral movement of point-like objects that create a local pairing potential in the CuO2 plane.
648 - S. Y. Zhou , X. L. Li , B. Y. Pan 2012
The thermal conductivity $kappa$ of superconductor Ir$_{1-x}$Pt$_{x}$Te$_2$ ($x$ = 0.05) single crystal with strong spin-orbital coupling was measured down to 50 mK. The residual linear term $kappa_0/T$ is negligible in zero magnetic field. In low magnetic field, $kappa_0/T$ shows a slow field dependence. These results demonstrate that the superconducting gap of Ir$_{1-x}$Pt$_{x}$Te$_2$ is nodeless, and the pairing symmetry is likely conventional s-wave, despite the existence of strong spin-orbital coupling and a quantum critical point.
We use neutron powder diffraction to study on the non-superconducting phases of ThFeAsN$_{1-x}$O$_x$ with $x=0.15, 0.6$. In our previous results on the superconducting phase ThFeAsN with $T_c=$ 30 K, no magnetic transition is observed by cooling down to 6 K, and possible oxygen occupancy at the nitrogen site is shown in the refinement(H. C. Mao emph{et al.}, EPL, 117, 57005 (2017)). Here, in the oxygen doped system ThFeAsN$_{1-x}$O$_x$, two superconducting region ($0leqslant x leqslant 0.1$ and $0.25leqslant x leqslant 0.55$) have been identified by transport experiments (B. Z. Li emph{et al.}, J. Phys.: Condens. Matter 30, 255602 (2018)). However, within the resolution of our neutron powder diffraction experiment, neither the intermediate doping $x=0.15$ nor the heavily overdoped compound $x= 0.6$ shows any magnetic order from 300 K to 4 K. Therefore, while it shares the common phenomenon of two superconducting domes as most of 1111-type iron-based superconductors, the magnetically ordered parent compound may not exist in this nitride family.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا