Do you want to publish a course? Click here

The coset factorization of finite cyclic group

91   0   0.0 ( 0 )
 Added by Kevin Zhao
 Publication date 2020
  fields
and research's language is English
 Authors Kevin Zhao




Ask ChatGPT about the research

Let $G$ be a finite cyclic group, written additively, and let $A, B$ be nonempty subsets of $G$. We will say that $G= A+B$ is a textit{factorization} if for each $g$ in $G$ there are unique elements $a, b$ of $G$ such that $g=a+b, ain A, bin B$. In particular, if $A$ is a complete set of residues $modulo$ $|A|$, then we call the factorization a textit{coset factorization} of $G$. In this paper, we mainly study a factorization $G= A+B$, where $G$ is a finite cyclic group and $A=[0,n-k-1]cup{i_0,i_1,ldots i_{k-1}}$ with $|A|=n$ and $ngeq 2k+1$. We obtain the following conclusion: If $(i)$ $kleq 2$ or $(ii)$ The number of distinct prime divisors of $gcd(|A|,|B|)$ is at most $1$ or $(iii)$ $gcd(|A|,|B|)=pq$ with $gcd(pq,frac{|B|}{gcd(|A|,|B|)})=1$, then $A$ is a complete set of residues $modulo$ $n$.



rate research

Read More

We show that the set R(w_0) of reduced expressions for the longest element in the hyperoctahedral group exhibits the cyclic sieving phenomenon. More specifically, R(w_0) possesses a natural cyclic action given by moving the first letter of a word to the end, and we show that the orbit structure of this action is encoded by the generating function for the major index on R(w_0).
180 - Jiangtao Peng , Yuanlin Li 2013
Let $G$ be a finite cyclic group. Every sequence $S$ of length $l$ over $G$ can be written in the form $S=(n_1g)cdotldotscdot(n_lg)$ where $gin G$ and $n_1, ldots, n_lin[1, ord(g)]$, and the index $ind(S)$ of $S$ is defined to be the minimum of $(n_1+cdots+n_l)/ord(g)$ over all possible $gin G$ such that $langle g rangle =G$. In this paper, we determine the index of any minimal zero-sum sequence $S$ of length 5 when $G=langle grangle$ is a cyclic group of a prime order and $S$ has the form $S=g^2(n_2g)(n_3g)(n_4g)$. It is shown that if $G=langle grangle$ is a cyclic group of prime order $p geq 31$, then every minimal zero-sum sequence $S$ of the above mentioned form has index 1 except in the case that $S=g^2(frac{p-1}{2}g)(frac{p+3}{2}g)((p-3)g)$.
152 - Guoqing Wang 2020
Let $mathcal{S}$ be a finite cyclic semigroup written additively. An element $e$ of $mathcal{S}$ is said to be idempotent if $e+e=e$. A sequence $T$ over $mathcal{S}$ is called {sl idempotent-sum free} provided that no idempotent of $mathcal{S}$ can be represented as a sum of one or more terms from $T$. We prove that an idempotent-sum free sequence over $mathcal{S}$ of length over approximately a half of the size of $mathcal{S}$ is well-structured. This result generalizes the Savchev-Chen Structure Theorem for zero-sum free sequences over finite cyclic groups.
155 - Jiangtao Peng , Fang Sun 2014
Let $p > 155$ be a prime and let $G$ be a cyclic group of order $p$. Let $S$ be a minimal zero-sum sequence with elements over $G$, i.e., the sum of elements in $S$ is zero, but no proper nontrivial subsequence of $S$ has sum zero. We call $S$ is unsplittable, if there do not exist $g$ in $S$ and $x,y in G$ such that $g=x+y$ and $Sg^{-1}xy$ is also a minimal zero-sum sequence. In this paper we show that if $S$ is an unsplittable minimal zero-sum sequence of length $|S|= frac{p-1}{2}$, then $S=g^{frac{p-11}{2}}(frac{p+3}{2}g)^4(frac{p-1}{2}g)$ or $g^{frac{p-7}{2}}(frac{p+5}{2}g)^2(frac{p-3}{2}g)$. Furthermore, if $S$ is a minimal zero-sum sequence with $|S| ge frac{p-1}{2}$, then $ind(S) leq 2$.
139 - Yuanlin Li , Jiangtao Peng 2013
Let $G$ be a finite cyclic group. Every sequence $S$ over $G$ can be written in the form $S=(n_1g)cdotldotscdot(n_lg)$ where $gin G$ and $n_1, ldots, n_lin[1, ord(g)]$, and the index $ind(S)$ of $S$ is defined to be the minimum of $(n_1+cdots+n_l)/ord(g)$ over all possible $gin G$ such that $langle g rangle =G$. An open problem on the index of length four sequences asks whether or not every minimal zero-sum sequence of length 4 over a finite cyclic group $G$ with $gcd(|G|, 6)=1$ has index 1. In this paper, we show that if $G=langle grangle$ is a cyclic group with order of a product of two prime powers and $gcd(|G|, 6)=1$, then every minimal zero-sum sequence $S$ of the form $S=(g)(n_2g)(n_3g)(n_4g)$ has index 1. In particular, our result confirms that the above problem has an affirmative answer when the order of $G$ is a product of two different prime numbers or a prime power, extending a recent result by the first author, Plyley, Yuan and Zeng.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا