Do you want to publish a course? Click here

Arithmetic version of Anderson localization via reducibility

104   0   0.0 ( 0 )
 Added by Lingrui Ge Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The arithmetic version of Anderson localization (AL), i.e., AL with explicit arithmetic description on both the localization frequency and the localization phase, was first given by Jitomirskaya cite{J} for the almost Mathieu operators (AMO). Later, the result was generalized by Bourgain and Jitomirskaya cite{bj02} to a class of {it one dimensional} quasi-periodic long-range operators. In this paper, we propose a novel approach based on an arithmetic version of Aubry duality and quantitative reducibility. Our method enables us to prove the same result for the class of quasi-periodic long-range operators in {it all dimensions}, which includes cite{J, bj02} as special cases.



rate research

Read More

We propose a new method to prove Anderson localization for quasiperiodic Schrodinger operators and apply it to the quasiperiodic model considered by Sinai and Frohlich-Spencer-Wittwer. More concretely, we prove Anderson localization for even $C^2$ cosine type quasiperiodic Schrodinger operators with large coupling constants, Diophantine frequencies and Diophantine phases.
We give a criterion for exponential dynamical localization in expectation (EDL) for ergodic families of operators acting on $ell^2(Z^d)$. As applications, we prove EDL for a class of quasi-periodic long-range operators on $ell^2(Z^d)$.
We consider the problem of the continuation with respect to a small parameter $epsilon$ of spatially localised and time periodic solutions in 1-dimensional dNLS lattices, where $epsilon$ represents the strength of the interaction among the sites on the lattice. Specifically, we consider different dNLS models and apply a recently developed normal form algorithm in order to investigate the continuation and the linear stability of degenerate localised periodic orbits on lower and full dimensional invariant resonant tori. We recover results already existing in the literature and provide new insightful ones, both for discrete solitons and for invariant subtori.
We consider the classical problem of the continuation of periodic orbits surviving to the breaking of invariant lower dimensional resonant tori in nearly integrable Hamiltonian systems. In particular we extend our previous results (presented in CNSNS, 61:198-224, 2018) for full dimensional resonant tori to lower dimensional ones. We develop a constructive normal form scheme that allows to identify and approximate the periodic orbits which continue to exist after the breaking of the resonant torus. A specific feature of our algorithm consists in the possibility of dealing with degenerate periodic orbits. Besides, under suitable hypothesis on the spectrum of the approximate periodic orbit, we obtain information on the linear stability of the periodic orbits feasible of continuation. A pedagogical example involving few degrees of freedom, but connected to the classical topic of discrete solitons in dNLS-lattices, is also provided.
We reconsider the classical problem of the continuation of degenerate periodic orbits in Hamiltonian systems. In particular we focus on periodic orbits that arise from the breaking of a completely resonant maximal torus. We here propose a suitable normal form construction that allows to identify and approximate the periodic orbits which survive to the breaking of the resonant torus. Our algorithm allows to treat the continuation of approximate orbits which are at leading order degenerate, hence not covered by classical averaging methods. We discuss possible future extensions and applications to localized periodic orbits in chains of weakly coupled oscillators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا