Do you want to publish a course? Click here

On the role of theory and modeling in neuroscience

79   0   0.0 ( 0 )
 Added by Daniel Levenstein
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

In recent years, the field of neuroscience has gone through rapid experimental advances and extensive use of quantitative and computational methods. This accelerating growth has created a need for methodological analysis of the role of theory and the modeling approaches currently used in this field. Toward that end, we start from the general view that the primary role of science is to solve empirical problems, and that it does so by developing theories that can account for phenomena within their domain of application. We propose a commonly-used set of terms - descriptive, mechanistic, and normative - as methodological designations that refer to the kind of problem a theory is intended to solve. Further, we find that models of each kind play distinct roles in defining and bridging the multiple levels of abstraction necessary to account for any neuroscientific phenomenon. We then discuss how models play an important role to connect theory and experiment, and note the importance of well-defined translation functions between them. Furthermore, we describe how models themselves can be used as a form of experiment to test and develop theories. This report is the summary of a discussion initiated at the conference Present and Future Theoretical Frameworks in Neuroscience, which we hope will contribute to a much-needed discussion in the neuroscientific community.



rate research

Read More

Model-based studies of auditory nerve responses to electrical stimulation can provide insight into the functioning of cochlear implants. Ideally, these studies can identify limitations in sound processing strategies and lead to improved methods for providing sound information to cochlear implant users. To accomplish this, models must accurately describe auditory nerve spiking while avoiding excessive complexity that would preclude large-scale simulations of populations of auditory nerve fibers and obscure insight into the mechanisms that influence neural encoding of sound information. In this spirit, we develop a point process model of the auditory nerve that provides a compact and accurate description of neural responses to electric stimulation. Inspired by the framework of generalized linear models, the proposed model consists of a cascade of linear and nonlinear stages. We show how each of these stages can be associated with biophysical mechanisms and related to models of neuronal dynamics. Moreover, we derive a semi-analytical procedure that uniquely determines each parameter in the model on the basis of fundamental statistics from recordings of single fiber responses to electric stimulation, including threshold, relative spread, jitter, and chronaxie. The model also accounts for refractory and summation effects that influence the responses of auditory nerve fibers to high pulse rate stimulation. Throughout, we compare model predictions to published physiological data and explain differences in auditory nerve responses to high and low pulse rate stimulation. We close by performing an ideal observer analysis of simulated spike trains in response to sinusoidally amplitude modulated stimuli and find that carrier pulse rate does not affect modulation detection thresholds.
89 - Moo K. Chung 2021
Recent developments in graph theoretic analysis of complex networks have led to deeper understanding of brain networks. Many complex networks show similar macroscopic behaviors despite differences in the microscopic details. Probably two most often observed characteristics of complex networks are scale-free and small-world properties. In this paper, we will explore whether brain networks follow scale-free and small-worldness among other graph theory properties.
Within computational neuroscience, informal interactions with modelers often reveal wildly divergent goals. In this opinion piece, we explicitly address the diversity of goals that motivate and ultimately influence modeling efforts. We argue that a wide range of goals can be meaningfully taken to be of highest importance. A simple informal survey conducted on the Internet confirmed the diversity of goals in the community. However, different priorities or preferences of individual researchers can lead to divergent model evaluation criteria. We propose that many disagreements in evaluating the merit of computational research stem from differences in goals and not from the mechanics of constructing, describing, and validating models. We suggest that authors state explicitly their goals when proposing models so that others can judge the quality of the research with respect to its stated goals.
Individual neurons often produce highly variable responses over nominally identical trials, reflecting a mixture of intrinsic noise and systematic changes in the animals cognitive and behavioral state. In addition to investigating how noise and state changes impact neural computation, statistical models of trial-to-trial variability are becoming increasingly important as experimentalists aspire to study naturalistic animal behaviors, which never repeat themselves exactly and may rarely do so even approximately. Estimating the basic features of neural response distributions may seem impossible in this trial-limited regime. Fortunately, by identifying and leveraging simplifying structure in neural data -- e.g. shared gain modulations across neural subpopulations, temporal smoothness in neural firing rates, and correlations in responses across behavioral conditions -- statistical estimation often remains tractable in practice. We review recent advances in statistical neuroscience that illustrate this trend and have enabled novel insights into the trial-by-trial operation of neural circuits.
Mechanosensation is a key part of the sensory repertoire of a vast array of different cells and organisms. The molecular dissection of the origins of mechanosensation is rapidly advancing as a result of both structural and functional studies. One intriguing mode of mechanosensation results from tension in the membrane of the cell (or vesicle) of interest. The aim of this review is to catalogue recent work that uses a mix of continuum and statistical mechanics to explore the role of the lipid bilayer in the function of mechanosensitive channels that respond to membrane tension. The role of bilayer deformation will be explored in the context of the well known mechanosensitive channel MscL. Additionally, we make suggestions for bridging gaps between our current theoretical understanding and common experimental techniques.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا