Geometric phase of very slow neutrons


Abstract in English

The geometric phase (GP) acquired by a neutron passing through a uniform magnetic field elucidates a subtle interplay between its spatial and spin degrees of freedom. In the standard setup using thermal neutrons, the kinetic energy is much larger than the typical Zeeman split. This causes the spin to undergo nearly perfect precession around the axis of the magnetic field and the GP becomes a function only of the corresponding cone angle. Here, we perform a plane wave analysis of the GP of very slow neutrons, for which the precession feature breaks down. Purely quantum-mechanical matter wave effects, such as resonance, reflection, and tunneling, become relevant for the behavior of the GP in this low energy scattering regime.

Download