Do you want to publish a course? Click here

The Rise and Fall of ASASSN-18pg: Following a TDE from Early To Late Times

323   0   0.0 ( 0 )
 Added by Thomas Holoien
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present nearly 500 days of observations of the tidal disruption event ASASSN-18pg, spanning from 54 days before peak light to 441 days after peak light. Our dataset includes X-ray, UV, and optical photometry, optical spectroscopy, radio observations, and the first published spectropolarimetric observations of a TDE. ASASSN-18pg was discovered on 2018 July 11 by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of $d=78.6$ Mpc, and with a peak UV magnitude of $msimeq14$ it is both one of the nearest and brightest TDEs discovered to-date. The photometric data allow us to track both the rise to peak and the long-term evolution of the TDE. ASASSN-18pg peaked at a luminosity of $Lsimeq2.2times10^{44}$ erg s$^{-1}$, and its late-time evolution is shallower than a flux $propto t^{-5/3}$ power-law model, similar to what has been seen in other TDEs. ASASSN-18pg exhibited Balmer lines and spectroscopic features consistent with Bowen fluorescence prior to peak which remained detectable for roughly 225 days after peak. Analysis of the two-component H$alpha$ profile indicates that, if they are the result of reprocessing of emission from the accretion disk, the different spectroscopic lines may be coming from regions between $sim10$ and $sim60$ light-days from the black hole. No X-ray emission is detected from the TDE and there is no evidence of a jet or strong outflow detected in the radio. Our spectropolarimetric observations give no strong evidence for significant asphericity in the emission region, with the emission region having an axis ratio of at least $sim0.65$.



rate research

Read More

We present the discovery of ASASSN-18jd (AT 2018bcb), a luminous optical/UV/X-ray transient located in the nucleus of the galaxy 2MASX J22434289$-$1659083 at $z=0.1192$. Swift UVOT photometry shows the UV SED of the transient to be well modeled by a slowly shrinking blackbody with temperature $T sim 2.5 times 10^{4} rm ~K$, a maximum observed luminosity of $L_text{max} = 4.5^{+0.6}_{-0.3} times 10^{44} rm ~erg ~s^{-1}$, and a total radiated energy of $E = 9.6^{+1.1}_{-0.6} times 10^{51} rm ~erg$. X-ray data from Swift XRT and XMM-Newton show a transient, variable X-ray flux with blackbody and power-law components. Optical spectra show strong, roughly constant broad Balmer emission as well as transient features attributable to He II, N III-V, O III, and coronal Fe. While ASASSN-18jd shares similarities with Tidal Disruption Events (TDEs), it is also similar to the rapid turn-on events seen in quiescent galaxies and in faint Active Galactic Nuclei (AGNs).
We present the discovery and early evolution of ASASSN-19bt, a tidal disruption event (TDE) discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) at a distance of $dsimeq115$ Mpc and the first TDE to be detected by TESS. As the TDE is located in the TESS Continuous Viewing Zone, our dataset includes 30-minute cadence observations starting on 2018 July 25, and we precisely measure that the TDE begins to brighten $sim8.3$ days before its discovery. Our dataset also includes 18 epochs of Swift UVOT and XRT observations, 2 epochs of XMM-Newton observations, 13 spectroscopic observations, and ground data from the Las Cumbres Observatory telescope network, spanning from 32 days before peak through 37 days after peak. ASASSN-19bt thus has the most detailed pre-peak dataset for any TDE. The TESS light curve indicates that the transient began to brighten on 2019 January 21.6 and that for the first 15 days its rise was consistent with a flux $propto t^2$ power-law model. The optical/UV emission is well-fit by a blackbody SED, and ASASSN-19bt exhibits an early spike in its luminosity and temperature roughly 32 rest-frame days before peak and spanning up to 14 days that has not been seen in other TDEs, possibly because UV observations were not triggered early enough to detect it. It peaked on 2019 March 04.9 at a luminosity of $Lsimeq1.3times10^{44}$ ergs s$^{-1}$ and radiated $Esimeq3.2times10^{50}$ ergs during the 41-day rise to peak. X-ray observations after peak indicate a softening of the hard X-ray emission prior to peak, reminiscent of the hard/soft states in X-ray binaries.
As a candidate super-Chandrasekhar or 09dc-like Type Ia supernova (SN Ia), SN 2012dn shares many characteristics with other members of this remarkable class of objects but lacks their extraordinary luminosity. Here, we present and discuss the most comprehensive optical data set of this SN to date, comprised of a densely sampled series of early-time spectra obtained within the Nearby Supernova Factory project, plus photometry and spectroscopy obtained at the VLT about 1 yr after the explosion. The light curves, colour curves, spectral time series and ejecta velocities of SN 2012dn are compared with those of other 09dc-like and normal SNe Ia, the overall variety within the class of 09dc-like SNe Ia is discussed, and new criteria for 09dc-likeness are proposed. Particular attention is directed to additional insight that the late-phase data provide. The nebular spectra show forbidden lines of oxygen and calcium, elements that are usually not seen in late-time spectra of SNe Ia, while the ionisation state of the emitting iron plasma is low, pointing to low ejecta temperatures and high densities. The optical light curves are characterised by an enhanced fading starting ~60 d after maximum and very low luminosities in the nebular phase, which is most readily explained by unusually early formation of clumpy dust in the ejecta. Taken together, these effects suggest a strongly perturbed ejecta density profile, which might lend support to the idea that 09dc-like characteristics arise from a brief episode of interaction with a hydrogen-deficient envelope during the first hours or days after the explosion.
We present analytic flux prescriptions for broadband spectra of self-absorbed and optically thin synchrotron radiation from gamma-ray burst afterglows, based on one-dimensional relativistic hydrodynamic simulations. By treating the evolution of critical spectrum parameters as a power-law break between the ultrarelativistic and non-relativistic asymptotic solutions, we generalize the prescriptions to any observer time. Our aim is to provide a set of formulas that constitutes a useful tool for accurate fitting of model-parameters to observational data, regardless of the dynamical phase of the outflow. The applicability range is not confined to gamma-ray burst afterglows, but includes all spherical outflows (also jets before the jet-break) that produce synchrotron radiation as they adiabatically decelerate in a cold, power-law medium. We test the accuracy of the prescriptions and show that numerical evidence suggests that typical relative errors in the derivation of physical quantities are about 10 per cent. A software implementation of the presented flux prescriptions combined with a fitting code is freely available on request and on-line. Together they can be used in order to directly fit model parameters to data.
92 - R. Cao , F.K. Liu , Z.Q. Zhou 2018
In the canonical model for tidal disruption events (TDEs), the stellar debris circularizes quickly to form an accretion disk of size about twice the orbital pericenter of the star. Most TDEs and candidates discovered in the optical/UV have broad optical emission lines with complex and diverse profiles of puzzling origin. Liu et al. recently developed a relativistic elliptical disk model of constant eccentricity in radius for the broad optical emission lines of TDEs and well reproduced the double-peaked line profiles of the TDE candidate PTF09djl with a large and extremely eccentric accretion disk. In this paper, we show that the optical emission lines of the TDE ASASSN-14li with radically different profiles are well modelled with the relativistic elliptical disk model, too. The accretion disk of ASASSN-14li has an eccentricity 0.97 and semimajor axis of 847 times the Schwarzschild radius (r_S) of the black hole (BH). It forms as the consequence of tidal disruption of a star passing by a massive BH with orbital pericenter 25r_S. The optical emission lines of ASASSN-14li are powered by an extended X-ray source of flat radial distribution overlapping the bulk of the accretion disk and the single-peaked asymmetric line profiles are mainly due to the orbital motion of the emitting matter within the disk plane of inclination about 26degr and of pericenter orientation closely toward the observer. Our results suggest that modelling the complex line profiles is powerful in probing the structures of accretion disks and coronal X-ray sources in TDEs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا