Do you want to publish a course? Click here

Adiabatic spin-dependent momentum transfer in an SU(N) degenerate Fermi gas

115   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a spin-orbit coupling scheme, where a retro-reflected laser beam selectively diffracts two spin components in opposite directions. Spin sensitivity is provided by sweeping through a magnetic-field sensitive transition while dark states ensure that spontaneous emission remains low. The scheme is adiabatic and thus inherently robust. This tailored spin-orbit coupling allows simultaneous measurements of the spin and momentum distributions of a strontium degenerate Fermi gas, and thus opens the path to momentum-resolved spin correlation measurements on SU(N) quantum magnets.



rate research

Read More

Many-body quantum systems can exhibit a striking degree of symmetry unparalleled by their classical counterparts. While in real materials SU($N$) symmetry is an idealization, this symmetry is pristinely realized in fully controllable ultracold alkaline-earth atomic gases. Here, we study an SU($N$)-symmetric Fermi liquid of $^{87}$Sr atoms, where $N$ can be tuned to be as large as 10. In the deeply degenerate regime, we show through precise measurements of density fluctuations and expansion dynamics that the large $N$ of spin states under SU($N$) symmetry leads to pronounced interaction effects in a system with a nominally negligible interaction parameter. Accounting for these effects we demonstrate thermometry accurate to one-hundredth of the Fermi energy. We also demonstrate record speed for preparing degenerate Fermi seas, reaching $T/T_F = 0.12$ in under 3 s, enabled by the SU($N$) symmetric interactions. This, along with the introduction of a new spin polarizing method, enables operation of a 3D optical lattice clock in the band insulating-regime.
Spin-polarized samples and spin mixtures of quantum degenerate fermionic atoms are prepared in selected excited Bloch bands of an optical chequerboard square lattice. For the spin-polarized case, extreme band lifetimes above $10,$s are observed, reflecting the suppression of collisions by Paulis exclusion principle. For spin mixtures, lifetimes are reduced by an order of magnitude by two-body collisions between different spin components, but still remarkably large values of about one second are found. By analyzing momentum spectra, we can directly observe the orbital character of the optical lattice. The observations demonstrated here form the basis for exploring the physics of Fermi gases with two paired spin components in orbital optical lattices, including the regime of unitarity.
The Hubbard model, containing only the minimum ingredients of nearest neighbor hopping and on-site interaction for correlated electrons, has succeeded in accounting for diverse phenomena observed in solid-state materials. One of the interesting extensions is to enlarge its spin symmetry to SU(N>2), which is closely related to systems with orbital degeneracy. Here we report a successful formation of the SU(6) symmetric Mott insulator state with an atomic Fermi gas of ytterbium (173Yb) in a three-dimensional optical lattice. Besides the suppression of compressibility and the existence of charge excitation gap which characterize a Mott insulating phase, we reveal an important difference between the cases of SU(6) and SU(2) in the achievable temperature as the consequence of different entropy carried by an isolated spin. This is analogous to Pomeranchuk cooling in solid 3He and will be helpful for investigating exotic quantum phases of SU(N) Hubbard system at extremely low temperatures.
Recently a scheme has been proposed for generating the 2D Rashba-type spin-orbit coupling (SOC) for ultracold atomic bosons in a bilayer geometry [S.-W. Su et al, Phys. Rev. A textbf{93}, 053630 (2016)]. Here we investigate the superfluidity properties of a degenerate Fermi gas affected by the SOC in such a bilayer system. We demonstrate that a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state appears in the regime of small to moderate atom-light coupling. In contrast to the ordinary SOC, the FFLO state emerges in the bilayer system without adding any external fields or spin polarization. As the atom-light coupling increases, the system can transit from the FFLO state to a topological superfluid state. These findings are also confirmed by the BdG simulations with a weak harmonic trap added.
We report the realization of a novel degenerate Fermi mixture with an SU(2)*SU(6) symmetry in a cold atomic gas. We successfully cool the mixture of the two fermionic isotopes of ytterbium 171Yb with the nuclear spin I=1/2 and 173Yb with I=5/2 below the Fermi temperature T_ F as 0.46T_F for 171Yb and 0.54T_F for 173Yb. The same scattering lengths for different spin components make this mixture featured with the novel SU(2)*SU(6) symmetry. The nuclear spin components are separately imaged by exploiting an optical Stern-Gerlach effect. In addition, the mixture is loaded into a 3D optical lattice to implement the SU(2)*SU(6) Hubbard model. This mixture will open the door to the study of novel quantum phases such as a spinor Bardeen-Cooper-Schrieffer-like fermionic superfluid.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا