We developed a wideband quasi-optical band-pass filter covering 170-520 GHz by exploiting the recent advancements in commercially available flexible printed circuit (FPC) fabrication technologies. We designed and fabricated a three-layered stack of loaded hexagonal grid metal meshes using a copper pattern with a narrowest linewidth of $50~mumathrm{m}$ on a polyimide substrate. The measured frequency pass-band shape was successfully reproduced through a numerical simulation using a set of parameters consistent with the dimensions of the fabricated metal meshes. FPC-based metal mesh filters will provide a new pathway toward the on-demand development of millimeter/submillimeter-wave quasi-optical filters at low cost and with a short turnaround time.