Do you want to publish a course? Click here

Bounds for the rainbow disconnection number of graphs

51   0   0.0 ( 0 )
 Added by Xueliang Li
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

An edge-cut $R$ of an edge-colored connected graph is called a rainbow-cut if no two edges in the edge-cut are colored the same. An edge-colored graph is rainbow disconnected if for any two distinct vertices $u$ and $v$ of the graph, there exists a $u$-$v$-rainbow-cut separating them. For a connected graph $G$, the rainbow disconnection number of $G$, denoted by rd$(G)$, is defined as the smallest number of colors that are needed in order to make $G$ rainbow disconnected. In this paper, we first give some tight upper bounds for rd$(G)$, and moreover, we completely characterize the graphs which meet the upper bound of the Nordhaus-Gaddum type results obtained early by us. Secondly, we propose a conjecture that $lambda^+(G)leq textnormal{rd}(G)leq lambda^+(G)+1$, where $lambda^+(G)$ is the upper edge-connectivity, and prove the conjecture for many classes of graphs, to support it. Finally, we give the relationship between rd$(G)$ of a graph $G$ and the rainbow vertex-disconnection number rvd$(L(G))$ of the line graph $L(G)$ of $G$.



rate research

Read More

50 - Xuqing Bai , Xueliang Li 2020
Let $G$ be a nontrivial edge-colored connected graph. An edge-cut $R$ of $G$ is called a {it rainbow edge-cut} if no two edges of $R$ are colored with the same color. For two distinct vertices $u$ and $v$ of $G$, if an edge-cut separates them, then the edge-cut is called a {it $u$-$v$-edge-cut}. An edge-colored graph $G$ is called emph{strong rainbow disconnected} if for every two distinct vertices $u$ and $v$ of $G$, there exists a both rainbow and minimum $u$-$v$-edge-cut ({it rainbow minimum $u$-$v$-edge-cut} for short) in $G$, separating them, and this edge-coloring is called a {it strong rainbow disconnection coloring} (srd-{it coloring} for short) of $G$. For a connected graph $G$, the emph{strong rainbow disconnection number} (srd-{it number} for short) of $G$, denoted by $textnormal{srd}(G)$, is the smallest number of colors that are needed in order to make $G$ strong rainbow disconnected. In this paper, we first characterize the graphs with $m$ edges such that $textnormal{srd}(G)=k$ for each $k in {1,2,m}$, respectively, and we also show that the srd-number of a nontrivial connected graph $G$ equals the maximum srd-number among the blocks of $G$. Secondly, we study the srd-numbers for the complete $k$-partite graphs, $k$-edge-connected $k$-regular graphs and grid graphs. Finally, we show that for a connected graph $G$, to compute $textnormal{srd}(G)$ is NP-hard. In particular, we show that it is already NP-complete to decide if $textnormal{srd}(G)=3$ for a connected cubic graph. Moreover, we show that for a given edge-colored (with an unbounded number of colors) connected graph $G$ it is NP-complete to decide whether $G$ is strong rainbow disconnected.
113 - Xueliang Li , Yindi Weng 2020
Let $G$ be a nontrivial connected and vertex-colored graph. A subset $X$ of the vertex set of $G$ is called rainbow if any two vertices in $X$ have distinct colors. The graph $G$ is called emph{rainbow vertex-disconnected} if for any two vertices $x$ and $y$ of $G$, there exists a vertex subset $S$ such that when $x$ and $y$ are nonadjacent, $S$ is rainbow and $x$ and $y$ belong to different components of $G-S$; whereas when $x$ and $y$ are adjacent, $S+x$ or $S+y$ is rainbow and $x$ and $y$ belong to different components of $(G-xy)-S$. Such a vertex subset $S$ is called a emph{rainbow vertex-cut} of $G$. For a connected graph $G$, the emph{rainbow vertex-disconnection number} of $G$, denoted by $rvd(G)$, is the minimum number of colors that are needed to make $G$ rainbow vertex-disconnected. In this paper, we obtain bounds of the rainbow vertex-disconnection number of a graph in terms of the minimum degree and maximum degree of the graph. We give a tighter upper bound for the maximum size of a graph $G$ with $rvd(G)=k$ for $kgeqfrac{n}{2}$. We then characterize the graphs of order $n$ with rainbow vertex-disconnection number $n-1$ and obtain the maximum size of a graph $G$ with $rvd(G)=n-1$. Moreover, we get a sharp threshold function for the property $rvd(G(n,p))=n$ and prove that almost all graphs $G$ have $rvd(G)=rvd(overline{G})=n$. Finally, we obtain some Nordhaus-Gaddum-type results: $n-5leq rvd(G)+rvd(overline{G})leq 2n$ and $n-1leq rvd(G)cdot rvd(overline{G})leq n^2$ for the rainbow vertex-disconnection numbers of nontrivial connected graphs $G$ and $overline{G}$ with order $ngeq 24$.
Let $k$ be a positive integer, and $G$ be a $k$-connected graph. An edge-coloured path is emph{rainbow} if all of its edges have distinct colours. The emph{rainbow $k$-connection number} of $G$, denoted by $rc_k(G)$, is the minimum number of colours in an edge-colouring of $G$ such that, any two vertices are connected by $k$ internally vertex-disjoint rainbow paths. The function $rc_k(G)$ was introduced by Chartrand, Johns, McKeon and Zhang in 2009, and has since attracted significant interest. Let $t_k(n,r)$ denote the minimum number of edges in a $k$-connected graph $G$ on $n$ vertices with $rc_k(G)le r$. Let $s_k(n,r)$ denote the maximum number of edges in a $k$-connected graph $G$ on $n$ vertices with $rc_k(G)ge r$. The functions $t_1(n,r)$ and $s_1(n,r)$ have previously been studied by various authors. In this paper, we study the functions $t_2(n,r)$ and $s_2(n,r)$. We determine bounds for $t_2(n,r)$ which imply that $t_2(n,2)=(1+o(1))nlog_2 n$, and $t_2(n,r)$ is linear in $n$ for $rge 3$. We also provide some remarks about the function $s_2(n,r)$.
An edge-colored graph $G$ is called textit{rainbow} if every edge of $G$ receives a different color. Given any host graph $G$, the textit{anti-Ramsey} number of $t$ edge-disjoint rainbow spanning trees in $G$, denoted by $r(G,t)$, is defined as the maximum number of colors in an edge-coloring of $G$ containing no $t$ edge-disjoint rainbow spanning trees. For any vertex partition $P$, let $E(P,G)$ be the set of non-crossing edges in $G$ with respect to $P$. In this paper, we determine $r(G,t)$ for all host graphs $G$: $r(G,t)=|E(G)|$ if there exists a partition $P_0$ with $|E(G)|-|E(P_0,G)|<t(|P_0|-1)$; and $r(G,t)=max_{Pcolon |P|geq 3} {|E(P,G)|+t(|P|-2)}$ otherwise. As a corollary, we determine $r(K_{p,q},t)$ for all values of $p,q, t$, improving a result of Jia, Lu and Zhang.
Let $F$ be a fixed graph. The rainbow Turan number of $F$ is defined as the maximum number of edges in a graph on $n$ vertices that has a proper edge-coloring with no rainbow copy of $F$ (where a rainbow copy of $F$ means a copy of $F$ all of whose edges have different colours). The systematic study of such problems was initiated by Keevash, Mubayi, Sudakov and Verstraete. In this paper, we show that the rainbow Turan number of a path with $k+1$ edges is less than $left(frac{9k}{7}+2right) n$, improving an earlier estimate of Johnston, Palmer and Sarkar.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا