Do you want to publish a course? Click here

Space-Time-Aware Multi-Resolution Video Enhancement

75   0   0.0 ( 0 )
 Added by Muhammad Haris
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider the problem of space-time super-resolution (ST-SR): increasing spatial resolution of video frames and simultaneously interpolating frames to increase the frame rate. Modern approaches handle these axes one at a time. In contrast, our proposed model called STARnet super-resolves jointly in space and time. This allows us to leverage mutually informative relationships between time and space: higher resolution can provide more detailed information about motion, and higher frame-rate can provide better pixel alignment. The components of our model that generate latent low- and high-resolution representations during ST-SR can be used to finetune a specialized mechanism for just spatial or just temporal super-resolution. Experimental results demonstrate that STARnet improves the performances of space-time, spatial, and temporal video super-resolution by substantial margins on publicly available datasets.



rate research

Read More

Compressed sensing enables the reconstruction of high-resolution signals from under-sampled data. While compressive methods simplify data acquisition, they require the solution of difficult recovery problems to make use of the resulting measurements. This article presents a new sensing framework that combines the advantages of both conventional and compressive sensing. Using the proposed stone transform, measurements can be reconstructed instantly at Nyquist rates at any power-of-two resolution. The same data can then be enhanced to higher resolutions using compressive methods that leverage sparsity to beat the Nyquist limit. The availability of a fast direct reconstruction enables compressive measurements to be processed on small embedded devices. We demonstrate this by constructing a real-time compressive video camera.
Recent years have seen considerable research activities devoted to video enhancement that simultaneously increases temporal frame rate and spatial resolution. However, the existing methods either fail to explore the intrinsic relationship between temporal and spatial information or lack flexibility in the choice of final temporal/spatial resolution. In this work, we propose an unconstrained space-time video super-resolution network, which can effectively exploit space-time correlation to boost performance. Moreover, it has complete freedom in adjusting the temporal frame rate and spatial resolution through the use of the optical flow technique and a generalized pixelshuffle operation. Our extensive experiments demonstrate that the proposed method not only outperforms the state-of-the-art, but also requires far fewer parameters and less running time.
121 - Gang Xu , Jun Xu , Zhen Li 2021
Space-time video super-resolution (STVSR) aims to increase the spatial and temporal resolutions of low-resolution and low-frame-rate videos. Recently, deformable convolution based methods have achieved promising STVSR performance, but they could only infer the intermediate frame pre-defined in the training stage. Besides, these methods undervalued the short-term motion cues among adjacent frames. In this paper, we propose a Temporal Modulation Network (TMNet) to interpolate arbitrary intermediate frame(s) with accurate high-resolution reconstruction. Specifically, we propose a Temporal Modulation Block (TMB) to modulate deformable convolution kernels for controllable feature interpolation. To well exploit the temporal information, we propose a Locally-temporal Feature Comparison (LFC) module, along with the Bi-directional Deformable ConvLSTM, to extract short-term and long-term motion cues in videos. Experiments on three benchmark datasets demonstrate that our TMNet outperforms previous STVSR methods. The code is available at https://github.com/CS-GangXu/TMNet.
Standard video and movie description tasks abstract away from person identities, thus failing to link identities across sentences. We propose a multi-sentence Identity-Aware Video Description task, which overcomes this limitation and requires to re-identify persons locally within a set of consecutive clips. We introduce an auxiliary task of Fill-in the Identity, that aims to predict persons IDs consistently within a set of clips, when the video descriptions are given. Our proposed approach to this task leverages a Transformer architecture allowing for coherent joint prediction of multiple IDs. One of the key components is a gender-aware textual representation as well an additional gender prediction objective in the main model. This auxiliary task allows us to propose a two-stage approach to Identity-Aware Video Description. We first generate multi-sentence video descriptions, and then apply our Fill-in the Identity model to establish links between the predicted person entities. To be able to tackle both tasks, we augment the Large Scale Movie Description Challenge (LSMDC) benchmark with new annotations suited for our problem statement. Experiments show that our proposed Fill-in the Identity model is superior to several baselines and recent works, and allows us to generate descriptions with locally re-identified people.
152 - Ren Yang , Mai Xu , Zulin Wang 2018
The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, ignoring the similarity between consecutive frames. In this paper, we investigate that heavy quality fluctuation exists across compressed video frames, and thus low quality frames can be enhanced using the neighboring high quality frames, seen as Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as a first attempt in this direction. In our approach, we firstly develop a Support Vector Machine (SVM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are as the input. The MF-CNN compensates motion between the non-PQF and PQFs through the Motion Compensation subnet (MC-subnet). Subsequently, the Quality Enhancement subnet (QE-subnet) reduces compression artifacts of the non-PQF with the help of its nearest PQFs. Finally, the experiments validate the effectiveness and generality of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video. The code of our MFQE approach is available at https://github.com/ryangBUAA/MFQE.git
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا