Do you want to publish a course? Click here

Contact network models matching the dynamics of the COVID-19 spreading

95   0   0.0 ( 0 )
 Added by Matus Medo
 Publication date 2020
  fields Physics Biology
and research's language is English
 Authors Matuv{s} Medo




Ask ChatGPT about the research

We study the epidemic spreading on spatial networks where the probability that two nodes are connected decays with their distance as a power law. As the exponent of the distance dependence grows, model networks smoothly transition from the random network limit to the regular lattice limit. We show that despite keeping the average number of contacts constant, the increasing exponent hampers the epidemic spreading by making long-distance connections less frequent. The spreading dynamics is influenced by the distance-dependence exponent as well and changes from exponential growth to power-law growth. The observed power-law growth is compatible with recent analyses of empirical data on the spreading of COVID-19 in numerous countries.



rate research

Read More

The current outbreak of the coronavirus disease 2019 (COVID-19) is an unprecedented example of how fast an infectious disease can spread around the globe (especially in urban areas) and the enormous impact it causes on public health and socio-economic activities. Despite the recent surge of investigations about different aspects of the COVID-19 pandemic, we still know little about the effects of city size on the propagation of this disease in urban areas. Here we investigate how the number of cases and deaths by COVID-19 scale with the population of Brazilian cities. Our results indicate small towns are proportionally more affected by COVID-19 during the initial spread of the disease, such that the cumulative numbers of cases and deaths per capita initially decrease with population size. However, during the long-term course of the pandemic, this urban advantage vanishes and large cities start to exhibit higher incidence of cases and deaths, such that every 1% rise in population is associated with a 0.14% increase in the number of fatalities per capita after about four months since the first two daily deaths. We argue that these patterns may be related to the existence of proportionally more health infrastructure in the largest cities and a lower proportion of older adults in large urban areas. We also find the initial growth rate of cases and deaths to be higher in large cities; however, these growth rates tend to decrease in large cities and to increase in small ones over time.
We describe the population-based SEIR (susceptible, exposed, infected, removed) model developed by the Irish Epidemiological Modelling Advisory Group (IEMAG), which advises the Irish government on COVID-19 responses. The model assumes a time-varying effective contact rate (equivalently, a time-varying reproduction number) to model the effect of non-pharmaceutical interventions. A crucial technical challenge in applying such models is their accurate calibration to observed data, e.g., to the daily number of confirmed new cases, as the past history of the disease strongly affects predictions of future scenarios. We demonstrate an approach based on inversion of the SEIR equations in conjunction with statistical modelling and spline-fitting of the data, to produce a robust methodology for calibration of a wide class of models of this type.
105 - K. Choi , Hoyun Choi , 2020
The Covid-19 pandemic is ongoing worldwide, and the damage it has caused is unprecedented. For prevention, South Korea has adopted a local quarantine strategy rather than a global lockdown. This approach not only minimizes economic damage, but it also efficiently prevents the spread of the disease. In this work, the spread of COVID-19 under local quarantine measures is modeled using the Susceptible-Exposed-Infected-Recovered model on complex networks. In this network approach, the links connected to isolated people are disconnected and then reinstated when they are released. This link dynamics leads to time-dependent reproduction number. Numerical simulations are performed on networks with reaction rates estimated from empirical data. The temporal pattern of the cumulative number of confirmed cases is then reproduced. The results show that a large number of asymptomatic infected patients are detected as they are quarantined together with infected patients. Additionally, possible consequences of the breakdowns of local quarantine measures and social distancing are considered.
The dynamics of epidemics depend on how peoples behavior changes during an outbreak. The impact of this effect due to control interventions on the morbidity rate is obvious and supported by numerous studies based on SIR-type models. However, the existing models do not explain the difference in outbreak profiles in countries with different intrinsic socio-cultural features and are rather specific for describing the complex dynamics of an outbreak. A system of models of the COVID-19 pandemic is proposed, combining the dynamics of social stress described by the tools of sociophysics8 with classical epidemic models. Even the combination of a dynamic SIR model with the classic triad of stages of general adaptation syndrome, Alarm-Resistance-Exhaustion, makes it possible to describe the available statistics for various countries of the world with a high degree of accuracy. The conceptualization of social stress leads to the division of the vulnerable population into different groups according to behavior mode, which can be tracked in detail. The sets of kinetic constants corresponding to optimal fit of model to data clearly characterize the society ability to focus efforts on protection against pandemic and keep this concentration for a considerable time. Such characterization can further help in the development of management strategies specific to a particular society: country, region, or social group.
We have two main aims in this paper. First we use theories of disease spreading on networks to look at the COVID-19 epidemic on the basis of individual contacts -- these give rise to predictions which are often rather different from the homogeneous mixing approaches usually used. Our second aim is to look at the role of social deprivation, again using networks as our basis, in the spread of this epidemic. We choose the city of Kolkata as a case study, but assert that the insights so obtained are applicable to a wide variety of urban environments which are densely populated and where social inequalities are rampant. Our predictions of hotspots are found to be in good agreement with those currently being identifed empirically as containment zones and provide a useful guide for identifying potential areas of concern.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا