Do you want to publish a course? Click here

A Novel Method of Extracting Topological Features from Word Embeddings

68   0   0.0 ( 0 )
 Added by Shafie Gholizadeh
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In recent years, topological data analysis has been utilized for a wide range of problems to deal with high dimensional noisy data. While text representations are often high dimensional and noisy, there are only a few work on the application of topological data analysis in natural language processing. In this paper, we introduce a novel algorithm to extract topological features from word embedding representation of text that can be used for text classification. Working on word embeddings, topological data analysis can interpret the embedding high-dimensional space and discover the relations among different embedding dimensions. We will use persistent homology, the most commonly tool from topological data analysis, for our experiment. Examining our topological algorithm on long textual documents, we will show our defined topological features may outperform conventional text mining features.



rate research

Read More

In this paper, we reproduce the experiments of Artetxe et al. (2018b) regarding the robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. We show that the reproduction of their method is indeed feasible with some minor assumptions. We further investigate the robustness of their model by introducing four new languages that are less similar to English than the ones proposed by the original paper. In order to assess the stability of their model, we also conduct a grid search over sensible hyperparameters. We then propose key recommendations applicable to any research project in order to deliver fully reproducible research.
We propose to learn word embeddings from visual co-occurrences. Two words co-occur visually if both words apply to the same image or image region. Specifically, we extract four types of visual co-occurrences between object and attribute words from large-scale, textually-annotated visual databases like VisualGenome and ImageNet. We then train a multi-task log-bilinear model that compactly encodes word meanings represented by each co-occurrence type into a single visual word-vector. Through unsupervised clustering, supervised partitioning, and a zero-shot-like generalization analysis we show that our word embeddings complement text-only embeddings like GloVe by better representing similarities and differences between visual concepts that are difficult to obtain from text corpora alone. We further evaluate our embeddings on five downstream applications, four of which are vision-language tasks. Augmenting GloVe with our embeddings yields gains on all tasks. We also find that random embeddings perform comparably to learned embeddings on all supervised vision-language tasks, contrary to conventional wisdom.
290 - Lianbo Ma , Peng Sun , Zhiwei Lin 2019
Learning knowledge graph embedding from an existing knowledge graph is very important to knowledge graph completion. For a fact $(h,r,t)$ with the head entity $h$ having a relation $r$ with the tail entity $t$, the current approaches aim to learn low dimensional representations $(mathbf{h},mathbf{r},mathbf{t})$, each of which corresponds to the elements in $(h, r, t)$, respectively. As $(mathbf{h},mathbf{r},mathbf{t})$ is learned from the existing facts within a knowledge graph, these representations can not be used to detect unknown facts (if the entities or relations never occur in the knowledge graph). This paper proposes a new approach called TransW, aiming to go beyond the current work by composing knowledge graph embeddings using word embeddings. Given the fact that an entity or a relation contains one or more words (quite often), it is sensible to learn a mapping function from word embedding spaces to knowledge embedding spaces, which shows how entities are constructed using human words. More importantly, composing knowledge embeddings using word embeddings makes it possible to deal with the emerging new facts (either new entities or relations). Experimental results using three public datasets show the consistency and outperformance of the proposed TransW.
Although the word-popularity based negative sampler has shown superb performance in the skip-gram model, the theoretical motivation behind oversampling popular (non-observed) words as negative samples is still not well understood. In this paper, we start from an investigation of the gradient vanishing issue in the skipgram model without a proper negative sampler. By performing an insightful analysis from the stochastic gradient descent (SGD) learning perspective, we demonstrate that, both theoretically and intuitively, negative samples with larger inner product scores are more informative than those with lower scores for the SGD learner in terms of both convergence rate and accuracy. Understanding this, we propose an alternative sampling algorithm that dynamically selects informative negative samples during each SGD update. More importantly, the proposed sampler accounts for multi-dimensional self-embedded features during the sampling process, which essentially makes it more effective than the original popularity-based (one-dimensional) sampler. Empirical experiments further verify our observations, and show that our fine-grained samplers gain significant improvement over the existing ones without increasing computational complexity.
Segmental models are sequence prediction models in which scores of hypotheses are based on entire variable-length segments of frames. We consider segmental models for whole-word (acoustic-to-word) speech recognition, with the feature vectors defined using vector embeddings of segments. Such models are computationally challenging as the number of paths is proportional to the vocabulary size, which can be orders of magnitude larger than when using subword units like phones. We describe an efficient approach for end-to-end whole-word segmental models, with forward-backward and Viterbi decoding performed on a GPU and a simple segment scoring function that reduces space complexity. In addition, we investigate the use of pre-training via jointly trained acoustic word embeddings (AWEs) and acoustically grounded word embeddings (AGWEs) of written word labels. We find that word error rate can be reduced by a large margin by pre-training the acoustic segment representation with AWEs, and additional (smaller) gains can be obtained by pre-training the word prediction layer with AGWEs. Our final models improve over prior A2W models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا