Do you want to publish a course? Click here

Efficient description of many-body systems with Matrix Product Density Operators

92   0   0.0 ( 0 )
 Added by Norbert Schuch
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Matrix Product States form the basis of powerful simulation methods for ground state problems in one dimension. Their power stems from the fact that they faithfully approximate states with a low amount of entanglement, the area law. In this work, we establish the mixed state analogue of this result: We show that one-dimensional mixed states with a low amount of entanglement, quantified by the entanglement of purification, can be efficiently approximated by Matrix Product Density Operators (MPDOs). In combination with results establishing area laws for thermal states, this helps to put the use of MPDOs in the simulation of thermal states on a formal footing.



rate research

Read More

Simulating quantum circuits with classical computers requires resources growing exponentially in terms of system size. Real quantum computer with noise, however, may be simulated polynomially with various methods considering different noise models. In this work, we simulate random quantum circuits in 1D with Matrix Product Density Operators (MPDO), for different noise models such as dephasing, depolarizing, and amplitude damping. We show that the method based on Matrix Product States (MPS) fails to approximate the noisy output quantum states for any of the noise models considered, while the MPDO method approximates them well. Compared with the method of Matrix Product Operators (MPO), the MPDO method reflects a clear physical picture of noise (with inner indices taking care of the noise simulation) and quantum entanglement (with bond indices taking care of two-qubit gate simulation). Consequently, in case of weak system noise, the resource cost of MPDO will be significantly less than that of the MPO due to a relatively small inner dimension needed for the simulation. In case of strong system noise, a relatively small bond dimension may be sufficient to simulate the noisy circuits, indicating a regime that the noise is large enough for an `easy classical simulation. Moreover, we propose a more effective tensor updates scheme with optimal truncations for both the inner and the bond dimensions, performed after each layer of the circuit, which enjoys a canonical form of the MPDO for improving simulation accuracy. With truncated inner dimension to a maximum value $kappa$ and bond dimension to a maximum value $chi$, the cost of our simulation scales as $sim NDkappa^3chi^3$, for an $N$-qubit circuit with depth $D$.
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced by F. Verstraete et al. in 2005 and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well as to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced by Cirac et al. in 2011.
64 - Christian B. Mendl 2018
We devise a numerical scheme for the time evolution of matrix product operators by adapting the time-dependent variational principle for matrix product states [J. Haegeman et al, Phys. Rev. B 94, 165116 (2016)]. A simple augmentation of the initial operator $mathcal{O}$ by the Hamiltonian $H$ helps to conserve the average energy $mathrm{tr}[H mathcal{O}(t)]$ in the numerical scheme and increases the overall precision. As demonstration, we apply the improved method to a random operator on a small one-dimensional lattice, using the spin-1 Heisenberg XXZ model Hamiltonian; we observe that the augmentation reduces the trace-distance to the numerically exact time-evolved operator by a factor of 10, at the same computational cost.
The phenomenon of many-body localisation received a lot of attention recently, both for its implications in condensed-matter physics of allowing systems to be an insulator even at non-zero temperature as well as in the context of the foundations of quantum statistical mechanics, providing examples of systems showing the absence of thermalisation following out-of-equilibrium dynamics. In this work, we establish a novel link between dynamical properties - the absence of a group velocity and transport - with entanglement properties of individual eigenvectors. Using Lieb-Robinson bounds and filter functions, we prove rigorously under simple assumptions on the spectrum that if a system shows strong dynamical localisation, all of its many-body eigenvectors have clustering correlations. In one dimension this implies directly an entanglement area law, hence the eigenvectors can be approximated by matrix-product states. We also show this statement for parts of the spectrum, allowing for the existence of a mobility edge above which transport is possible.
We study the problem of learning the Hamiltonian of a quantum many-body system given samples from its Gibbs (thermal) state. The classical analog of this problem, known as learning graphical models or Boltzmann machines, is a well-studied question in machine learning and statistics. In this work, we give the first sample-efficient algorithm for the quantum Hamiltonian learning problem. In particular, we prove that polynomially many samples in the number of particles (qudits) are necessary and sufficient for learning the parameters of a spatially local Hamiltonian in l_2-norm. Our main contribution is in establishing the strong convexity of the log-partition function of quantum many-body systems, which along with the maximum entropy estimation yields our sample-efficient algorithm. Classically, the strong convexity for partition functions follows from the Markov property of Gibbs distributions. This is, however, known to be violated in its exact form in the quantum case. We introduce several new ideas to obtain an unconditional result that avoids relying on the Markov property of quantum systems, at the cost of a slightly weaker bound. In particular, we prove a lower bound on the variance of quasi-local operators with respect to the Gibbs state, which might be of independent interest. Our work paves the way toward a more rigorous application of machine learning techniques to quantum many-body problems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا