Do you want to publish a course? Click here

Learning Implicit Surface Light Fields

49   0   0.0 ( 0 )
 Added by Michael Oechsle
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Implicit representations of 3D objects have recently achieved impressive results on learning-based 3D reconstruction tasks. While existing works use simple texture models to represent object appearance, photo-realistic image synthesis requires reasoning about the complex interplay of light, geometry and surface properties. In this work, we propose a novel implicit representation for capturing the visual appearance of an object in terms of its surface light field. In contrast to existing representations, our implicit model represents surface light fields in a continuous fashion and independent of the geometry. Moreover, we condition the surface light field with respect to the location and color of a small light source. Compared to traditional surface light field models, this allows us to manipulate the light source and relight the object using environment maps. We further demonstrate the capabilities of our model to predict the visual appearance of an unseen object from a single real RGB image and corresponding 3D shape information. As evidenced by our experiments, our model is able to infer rich visual appearance including shadows and specular reflections. Finally, we show that the proposed representation can be embedded into a variational auto-encoder for generating novel appearances that conform to the specified illumination conditions.



rate research

Read More

We suggest to represent an X-Field -a set of 2D images taken across different view, time or illumination conditions, i.e., video, light field, reflectance fields or combinations thereof-by learning a neural network (NN) to map their view, time or light coordinates to 2D images. Executing this NN at new coordinates results in joint view, time or light interpolation. The key idea to make this workable is a NN that already knows the basic tricks of graphics (lighting, 3D projection, occlusion) in a hard-coded and differentiable form. The NN represents the input to that rendering as an implicit map, that for any view, time, or light coordinate and for any pixel can quantify how it will move if view, time or light coordinates change (Jacobian of pixel position with respect to view, time, illumination, etc.). Our X-Field representation is trained for one scene within minutes, leading to a compact set of trainable parameters and hence real-time navigation in view, time and illumination.
Multilayer perceptrons (MLPs) have been successfully used to represent 3D shapes implicitly and compactly, by mapping 3D coordinates to the corresponding signed distance values or occupancy values. In this paper, we propose a novel positional encoding scheme, called Spline Positional Encoding, to map the input coordinates to a high dimensional space before passing them to MLPs, for helping to recover 3D signed distance fields with fine-scale geometric details from unorganized 3D point clouds. We verified the superiority of our approach over other positional encoding schemes on tasks of 3D shape reconstruction from input point clouds and shape space learning. The efficacy of our approach extended to image reconstruction is also demonstrated and evaluated.
A surface light field represents the radiance of rays originating from any points on the surface in any directions. Traditional approaches require ultra-dense sampling to ensure the rendering quality. In this paper, we present a novel neural network based technique called deep surface light field or DSLF to use only moderate sampling for high fidelity rendering. DSLF automatically fills in the missing data by leveraging different sampling patterns across the vertices and at the same time eliminates redundancies due to the networks prediction capability. For real data, we address the image registration problem as well as conduct texture-aware remeshing for aligning texture edges with vertices to avoid blurring. Comprehensive experiments show that DSLF can further achieve high data compression ratio while facilitating real-time rendering on the GPU.
Most machine learning-based coronary artery segmentation methods represent the vascular lumen surface in an implicit way by the centerline and the associated lumen radii, which makes the subsequent modeling process to generate a whole piece of watertight coronary artery tree model difficult. To solve this problem, in this paper, we propose a modeling method with the learning-based segmentation results by (1) considering mesh vertices as physical particles and using interaction force model and particle expansion model to generate uniformly distributed point cloud on the implicit lumen surface and; (2) doing incremental Delaunay-based triangulation. Our method has the advantage of being able to consider the complex shape of the coronary artery tree as a whole piece; hence no extra stitching or intersection removal algorithm is needed to generate a watertight model. Experiment results demonstrate that our method is capable of generating high quality mesh model which is highly consistent with the given implicit vascular lumen surface, with an average error of 0.08 mm.
Surface reconstruction from noisy, non-uniformly, and unoriented point clouds is a fascinating yet difficult problem in computer vision and computer graphics. In this paper, we propose Neural-IMLS, a novel approach that learning noise-resistant signed distance function (SDF) for reconstruction. Instead of explicitly learning priors with the ground-truth signed distance values, our method learns the SDF from raw point clouds directly in a self-supervised fashion by minimizing the loss between the couple of SDFs, one obtained by the implicit moving least-square function (IMLS) and the other by our network. Finally, a watertight and smooth 2-manifold triangle mesh is yielded by running Marching Cubes. We conduct extensive experiments on various benchmarks to demonstrate the performance of Neural-IMLS, especially for point clouds with noise.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا