Imaging the emergence of bacterial turbulence: phase diagram and transition kinetics


Abstract in English

We experimentally study the emergence of collective bacterial swimming, a phenomenon often referred to as bacterial turbulence. A phase diagram of the flow of 3D E. coli suspensions spanned by bacterial concentration, the swimming speed of bacteria and the number fraction of active swimmers is systematically mapped, which shows quantitative agreement with kinetic theories and demonstrates the dominant role of hydrodynamic interactions in bacterial collective swimming. More importantly, we trigger bacterial turbulence by suddenly increasing the swimming speed of light-powered bacteria and image the transition to the turbulence in real time. Our experiments identify two unusual kinetic pathways, i.e., the one-step transition with long incubation periods near the phase boundary and the two-step transition driven by long-wavelength instabilities deep inside the turbulent phase. Our study provides not only a quantitative verification of existing theories, but also new insights into interparticle interactions and transition kinetics of bacterial turbulence.

Download