Do you want to publish a course? Click here

On the $8pi$-critical mass threshold of a Patlak-Keller-Segel-Navier-Stokes system

90   0   0.0 ( 0 )
 Added by Siming He
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we proposed a coupled Patlak-Keller-Segel-Navier-Stokes system, which has dissipative free energy. On the plane $rr^2$, if the total mass of the cells is strictly less than $8pi$, classical solutions exist for any finite time, and their $H^s$-Sobolev norms are almost uniformly bounded in time. For the radially symmetric solutions, this $8pi$-mass threshold is critical. On the torus $mathbb{T}^2$, the solutions are uniformly bounded in time under the same mass constraint.



rate research

Read More

110 - Siming He , Eitan Tadmor 2019
We study the regularity and large-time behavior of a crowd of species driven by chemo-tactic interactions. What distinguishes the different species is the way they interact with the rest of the crowd: the collective motion is driven by different chemical reactions which end up in a coupled system of parabolic Patlak-Keller-Segel equations. We show that the densities of the different species diffuse to zero provided the chemical interactions between the different species satisfy certain sub-critical condition; the latter is intimately related to a log-Hardy-Littlewood-Sobolev inequality for systems due to Shafrir & Wolansky. Thus for example, when two species interact, one of which has mass less than $4pi$, then the 2-system stays smooth for all time independent of the total mass of the system, in sharp contrast with the well-known breakdown of one specie with initial mass$> 8pi$.
Perhaps the most classical diffusion model for chemotaxis is the Patlak-Keller-Segel system begin{equation} label{ks0} left{ begin{aligned} u_t =& Delta u - abla cdot(u abla v) quad inn R^2times(0,infty), v =& (-Delta_{R^2})^{-1} u := frac 1{2pi} int_{R^2} , log frac 1{|x-z|} u(z,t), dz, & qquad u(cdot ,0) = u_0 ge 0quadhbox{in } R^2. end{aligned} right. end{equation} We consider the {em critical mass case} $int_{R^2} u_0(x), dx = 8pi$ which corresponds to the exact threshold between finite-time blow-up and self-similar diffusion towards zero. We find a radial function $u_0^*$ with mass $8pi$ such that for any initial condition $u_0$ sufficiently close to $u_0^*$ the solution $u(x,t)$ of equ{ks0} is globally defined and blows-up in infinite time. As $tto+infty $ it has the approximate profile $$ u(x,t) approx frac 1{la^2} U_0left (frac {x-xi(t)}{la(t)} right ), quad U_0(y)= frac{8}{(1+|y|^2)^2}, $$ where $la(t) approx frac c{sqrt{log t}}, xi(t)to q $ for some $c>0$ and $qin R^2$
We are concerned with the Keller--Segel--Navier--Stokes system begin{equation*} left{ begin{array}{ll} rho_t+ucdot ablarho=Deltarho- ablacdot(rho mathcal{S}(x,rho,c) abla c)-rho m, &!! (x,t)in Omegatimes (0,T), m_t+ucdot abla m=Delta m-rho m, &!! (x,t)in Omegatimes (0,T), c_t+ucdot abla c=Delta c-c+m, & !! (x,t)in Omegatimes (0,T), u_t+ (ucdot abla) u=Delta u- abla P+(rho+m) ablaphi,quad ablacdot u=0, &!! (x,t)in Omegatimes (0,T) end{array}right. end{equation*} subject to the boundary condition $( ablarho-rho mathcal{S}(x,rho,c) abla c)cdot u!!=! abla mcdot u= abla ccdot u=0, u=0$ in a bounded smooth domain $Omegasubsetmathbb R^3$. It is shown that the corresponding problem admits a globally classical solution with exponential decay properties under the hypothesis that $mathcal{S}in C^2(overlineOmegatimes [0,infty)^2)^{3times 3}$ satisfies $|mathcal{S}(x,rho,c)|leq C_S $ for some $C_S>0$, and the initial data satisfy certain smallness conditions.
85 - Cong Wang , Yu Gao , Xiaoping Xue 2021
Based on some elementary estimates for the space-time derivatives of the heat kernel, we use a bootstrapping approach to establish the optimal decay rates for the $L^q(mathbb{R}^d)$ ($1leq qleqinfty$, $dinmathbb{N}$) norm of the space-time derivatives of solutions to the (modified) Patlak-Keller-Segel equations with initial data in $L^1(mathbb{R}^d)$, which implies the joint space-time analyticity of solutions. When the $L^1(mathbb{R}^d)$ norm of the initial datum is small, the upper bound for the decay estimates is global in time, which yields a lower bound on the growth rate of the radius of space-time analyticity in time. As a byproduct, the space analyticity is obtained for any initial data in $L^1(mathbb{R}^d)$. The decay estimates and space-time analyticity are also established for solutions bounded in both space and time variables. The results can be extended to a more general class of equations, including the Navier-Stokes equations.
We are concerned with the Cauchy problem of the full compressible Navier-Stokes equations satisfied by viscous and heat conducting fluids in $mathbb{R}^n.$ We focus on the so-called critical Besov regularity framework. In this setting, it is natural to consider initial densities $rho_0,$ velocity fields $u_0$ and temperatures $theta_0$ with $a_0:=rho_0-1indot B^{frac np}_{p,1},$ $u_0indot B^{frac np-1}_{p,1}$ and $theta_0indot B^{frac np-2}_{p,1}.$ After recasting the whole system in Lagrangian coordinates, and working with the emph{total energy along the flow} rather than with the temperature, we discover that the system may be solved by means of Banach fixed point theorem in a critical functional framework whenever the space dimension is $ngeq2,$ and $1<p<2n.$ Back to Eulerian coordinates, this allows to improve the range of $p$s for which the system is locally well-posed, compared to Danchin, Comm. Partial Differential Equations 26 (2001).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا