No Arabic abstract
The plasma wakefield accelerator may accelerate particles to high energy in a future linear collider with unprecedented acceleration gradients, exceeding the GeV/m range. Beams for this application would have extremely high brightness and, subject to the intense plasma ion-derived focusing, they would achieve densities high enough to induce the plasma ions to collapse into the beam volume. This non-uniform ion density gives rise to strong nonlinear focusing which may lead to deleterious beam emittance growth. The effects of ion collapse and their mitigation has been investigated recently through particle-in-cell simulations, which show that by dynamically matching the beam to the focusing of the collapsed ion distribution, one may avoid serious emittance growth. We extend this work by exploring the near-equilibrium state of the beam-ion system reached after the ions have collapsed, a condition yielding the emittance growth mitigation observed. We show through PIC simulations and analytical theory that in this case a dual electron beam-ion Bennett-type equilibrium distribution is approached. Here, the beam and ion distributions share nearly the same shape, which generates nonlinear transverse electromagnetic fields. We exploit a Bennett-type model to study beam phase space dynamics and emittance growth over time scales much longer than permitted by PIC simulations through use of a 2D symplectic tracking code with Monte Carlo scattering based on Molieres theory of small angle multiple scattering. We find that while phase space diffusion due to parametric excitations of the beam size due to plasma non-uniformity is negligible, scattering from collapsed ions gives rise to manageable emittance growth in the case of a linear collider. The implications of these results on experiments planned at FACET-II are examined.
A future plasma based linear collider has the potential to reach unprecedented energies and transform our understanding of high energy physics. The extremely dense beams in such a device would cause the plasma ions to fall toward the axis. For more mild ion motion, this introduces a nonlinear perturbation to the focusing fields inside of the bubble. However, for extreme ion motion, the ion distribution collapses to a quasi-equilibrium characterized by a thin filament of extreme density on the axis which generates strong, nonlinear focusing fields. These fields can provoke unacceptable emittance growth that can be reduced through careful beam matching. In this paper, we discuss the rich physics of ion motion, give a brief overview of plans for the E-314 experiment at FACET-II which will experimentally demonstrate ion motion in plasma accelerators, and present results of particle-in-cell simulations of ion motion relevant to the E-314 experiment.
A framework for integrating transfer matrices with particle-in-cell simulations is developed for TeV staging of plasma wakefield accelerators. Using nonlinear transfer matrices in terms up to ninth order in normalized energy spread $sqrt{langledeltagamma^2rangle}$ and deriving a compact expression for the chromatic emittance growth in terms of the nonlinear matrix, plasma wakefield accelerating stages simulated using the three-dimensional particle-in-cell framework OSIRIS 4.0 were combined to model acceleration of an electron beam from 10 GeV to 1 TeV in 85 plasma stages of meter scale-length with long density ramps and connected by simple focusing lenses. In this calculation, we find that for initial relative energy spreads below $10^{-3}$, energy-spread growth below $10^{-5}$ of the energy gain per stage and normalized emittance below mm-mrad, the chromatic emittance growth can be minimal. The technique developed here may be useful for plasma collider design, and potentially could be expanded to encompass non-linear wake structures and include other degrees of freedom such as lepton spin.
Plasma-based accelerators (PBAs), having demonstrated the production of GeV electron beams in only centimetre scales, offer a path towards a new generation of highly compact and cost-effective particle accelerators. However, achieving the required beam quality, particularly on the energy spread for applications such as free-electron lasers, remains a challenge. Here we investigate fundamental sources of energy spread and bunch length in PBAs which arise from the betatron motion of beam electrons. We present an analytical theory, validated against particle-in-cell simulations, which accurately describes these phenomena. Significant impact on the beam quality is predicted for certain configurations, explaining previously observed limitations on the achievable bunch length and energy spread. Guidelines for mitigating these contributions towards high-quality beams are deduced.
We investigate beam loading and emittance preservation for a high-charge electron beam being accelerated in quasi-linear plasma wakefields driven by a short proton beam. The structure of the studied wakefields are similar to those of a long, modulated proton beam, such as the AWAKE proton driver. We show that by properly choosing the electron beam parameters and exploiting two well known effects, beam loading of the wakefield and full blow out of plasma electrons by the accelerated beam, the electron beam can gain large amounts of energy with a narrow final energy spread (%-level) and without significant emittance growth.
Next-generation plasma-based accelerators can push electron beams to GeV energies within centimetre distances. The plasma, excited by a driver pulse, is indeed able to sustain huge electric fields that can efficiently accelerate a trailing witness bunch, which was experimentally demonstrated on multiple occasions. Thus, the main focus of the current research is being shifted towards achieving a high quality of the beam after the plasma acceleration. In this letter we present beam-driven plasma wakefield acceleration experiment, where initially preformed high-quality witness beam was accelerated inside the plasma and characterized. In this experiment the witness beam quality after the acceleration was maintained on high level, with $0.2%$ final energy spread and $3.8~mu m$ resulting normalized transverse emittance after the acceleration. In this article, for the first time to our knowledge, the emittance of the PWFA beam was directly measured.