Do you want to publish a course? Click here

Are Labels Necessary for Neural Architecture Search?

215   0   0.0 ( 0 )
 Added by Chenxi Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Existing neural network architectures in computer vision -- whether designed by humans or by machines -- were typically found using both images and their associated labels. In this paper, we ask the question: can we find high-quality neural architectures using only images, but no human-annotated labels? To answer this question, we first define a new setup called Unsupervised Neural Architecture Search (UnNAS). We then conduct two sets of experiments. In sample-based experiments, we train a large number (500) of diverse architectures with either supervised or unsupervised objectives, and find that the architecture rankings produced with and without labels are highly correlated. In search-based experiments, we run a well-established NAS algorithm (DARTS) using various unsupervised objectives, and report that the architectures searched without labels can be competitive to their counterparts searched with labels. Together, these results reveal the potentially surprising finding that labels are not necessary, and the image statistics alone may be sufficient to identify good neural architectures.



rate research

Read More

103 - Weijian Deng , Liang Zheng 2020
To calculate the model accuracy on a computer vision task, e.g., object recognition, we usually require a test set composing of test samples and their ground truth labels. Whilst standard usage cases satisfy this requirement, many real-world scenarios involve unlabeled test data, rendering common model evaluation methods infeasible. We investigate this important and under-explored problem, Automatic model Evaluation (AutoEval). Specifically, given a labeled training set and a classifier, we aim to estimate the classification accuracy on unlabeled test datasets. We construct a meta-dataset: a dataset comprised of datasets generated from the original images via various transformations such as rotation, background substitution, foreground scaling, etc. As the classification accuracy of the model on each sample (dataset) is known from the original dataset labels, our task can be solved via regression. Using the feature statistics to represent the distribution of a sample dataset, we can train regression models (e.g., a regression neural network) to predict model performance. Using synthetic meta-dataset and real-world datasets in training and testing, respectively, we report a reasonable and promising prediction of the model accuracy. We also provide insights into the application scope, limitation, and potential future direction of AutoEval.
We propose a new method for learning the structure of convolutional neural networks (CNNs) that is more efficient than recent state-of-the-art methods based on reinforcement learning and evolutionary algorithms. Our approach uses a sequential model-based optimization (SMBO) strategy, in which we search for structures in order of increasing complexity, while simultaneously learning a surrogate model to guide the search through structure space. Direct comparison under the same search space shows that our method is up to 5 times more efficient than the RL method of Zoph et al. (2018) in terms of number of models evaluated, and 8 times faster in terms of total compute. The structures we discover in this way achieve state of the art classification accuracies on CIFAR-10 and ImageNet.
Neural architecture search (NAS) has witnessed prevailing success in image classification and (very recently) segmentation tasks. In this paper, we present the first preliminary study on introducing the NAS algorithm to generative adversarial networks (GANs), dubbed AutoGAN. The marriage of NAS and GANs faces its unique challenges. We define the search space for the generator architectural variations and use an RNN controller to guide the search, with parameter sharing and dynamic-resetting to accelerate the process. Inception score is adopted as the reward, and a multi-level search strategy is introduced to perform NAS in a progressive way. Experiments validate the effectiveness of AutoGAN on the task of unconditional image generation. Specifically, our discovered architectures achieve highly competitive performance compared to current state-of-the-art hand-crafted GANs, e.g., setting new state-of-the-art FID scores of 12.42 on CIFAR-10, and 31.01 on STL-10, respectively. We also conclude with a discussion of the current limitations and future potential of AutoGAN. The code is available at https://github.com/TAMU-VITA/AutoGAN
Neural Architecture Search (NAS) achieves significant progress in many computer vision tasks. While many methods have been proposed to improve the efficiency of NAS, the search progress is still laborious because training and evaluating plausible architectures over large search space is time-consuming. Assessing network candidates under a proxy (i.e., computationally reduced setting) thus becomes inevitable. In this paper, we observe that most existing proxies exhibit different behaviors in maintaining the rank consistency among network candidates. In particular, some proxies can be more reliable -- the rank of candidates does not differ much comparing their reduced setting performance and final performance. In this paper, we systematically investigate some widely adopted reduction factors and report our observations. Inspired by these observations, we present a reliable proxy and further formulate a hierarchical proxy strategy. The strategy spends more computations on candidate networks that are potentially more accurate, while discards unpromising ones in early stage with a fast proxy. This leads to an economical evolutionary-based NAS (EcoNAS), which achieves an impressive 400x search time reduction in comparison to the evolutionary-based state of the art (8 vs. 3150 GPU days). Some new proxies led by our observations can also be applied to accelerate other NAS methods while still able to discover good candidate networks with performance matching those found by previous proxy strategies.
The Neural Architecture Search (NAS) problem is typically formulated as a graph search problem where the goal is to learn the optimal operations over edges in order to maximise a graph-level global objective. Due to the large architecture parameter space, efficiency is a key bottleneck preventing NAS from its practical use. In this paper, we address the issue by framing NAS as a multi-agent problem where agents control a subset of the network and coordinate to reach optimal architectures. We provide two distinct lightweight implementations, with reduced memory requirements (1/8th of state-of-the-art), and performances above those of much more computationally expensive methods. Theoretically, we demonstrate vanishing regrets of the form O(sqrt(T)), with T being the total number of rounds. Finally, aware that random search is an, often ignored, effective baseline we perform additional experiments on 3 alternative datasets and 2 network configurations, and achieve favourable results in comparison.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا