Do you want to publish a course? Click here

Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with Liquid Argon

64   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The CENNS-10 experiment of the COHERENT collaboration has recently reported the first detection of coherent-elastic neutrino-nucleus scattering (CEvNS) in liquid Argon with more than $3 sigma$ significance. In this work, we exploit the new data in order to probe various interesting parameters which are of key importance to CEvNS within and beyond the Standard Model. A dedicated statistical analysis of these data shows that the current constraints are significantly improved in most cases. We derive a first measurement of the neutron rms charge radius of Argon, and also an improved determination of the weak mixing angle in the low energy regime. We also update the constraints on neutrino non-standard interactions, electromagnetic properties and light mediators with respect to those derived from the first COHERENT-CsI data.



rate research

Read More

Coherent elastic neutrino-nucleus scattering (CEvNS) is the dominant neutrino scattering channel for neutrinos of energy $E_ u < 100$ MeV. We report a limit for this process using data collected in an engineering run of the 29 kg CENNS-10 liquid argon detector located 27.5 m from the Oak Ridge National Laboratory Spallation Neutron Source (SNS) Hg target with $4.2times 10^{22}$ protons on target. The dataset yielded $< 7.4$ observed CEvNS events implying a cross section for the process, averaged over the SNS pion decay-at-rest flux, of $<3.4 times 10^{-39}$ cm$^{2}$, a limit within twice the Standard Model prediction. This is the first limit on CEvNS from an argon nucleus and confirms the earlier CsI non-standard neutrino interaction constraints from the collaboration. This run demonstrated the feasibility of the ongoing experimental effort to detect CEvNS with liquid argon.
We report the first measurement of coherent elastic neutrino-nucleus scattering (cevns) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer cevns over the background-only null hypothesis with greater than $3sigma$ significance. The measured cross section, averaged over the incident neutrino flux, is (2.2 $pm$ 0.7) $times$10$^{-39}$ cm$^2$ -- consistent with the standard model prediction. The neutron-number dependence of this result, together with that from our previous measurement on CsI, confirms the existence of the cevns process and provides improved constraints on non-standard neutrino interactions.
Release of COHERENT collaboration data from the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) on argon. This release corresponds with the results of Analysis A published in Akimov et al., arXiv:2003.10630 [nucl-ex]. Data is shared in a binned, text-based format representing both signal and backgrounds along with associated uncertainties such that the included data can be used to perform independent analyses. This document describes the contents of the data release as well as guidance on the use of the data. Included example code in C++ (ROOT) and Python show one possible use of the included data.
We study the sensitivity of detectors with directional sensitivity to coherent elastic neutrino-nucleus scattering (CE$ u$NS), and how these detectors complement measurements of the nuclear recoil energy. We consider stopped pion and reactor neutrino sources, and use gaseous helium and fluorine as examples of detector material. We generate Standard Model predictions, and compare to scenarios that include new, light vector or scalar mediators. We show that directional detectors can provide valuable additional information in discerning new physics, and we identify prominent spectral features in both the angular and the recoil energy spectrum for light mediators, even for nuclear recoil energy thresholds as high as $sim 50$ keV. Combined with energy and timing information, directional information can play an important role in extracting new physics from CE$ u$NS experiments.
98 - Kate Scholberg 2018
The COHERENT collaboration measured coherent elastic neutrino-nucleus scattering (CEvNS) for the first time at the Spallation Neutron Source at Oak Ridge National Laboratory, using a CsI[Na] detector. Here we discuss the nature of the CEvNS process, physics motivations, and experimental considerations for measuring CEvNS. We describe the CsI[Na] measurement, along with status and future of COHERENT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا