The space of holomorphic foliations of codimension one and degree $dgeq 2$ in $mathbb{P}^n$ ($ngeq 3$) has an irreducible component whose general element can be written as a pullback $F^*mathcal{F}$, where $mathcal{F}$ is a general foliation of degree $d$ in $mathbb{P}^2$ and $F:mathbb{P}^ndashrightarrow mathbb{P}^2$ is a general rational linear map. We give a polynomial formula for the degrees of such components.