Do you want to publish a course? Click here

Accelerated Analog Neuromorphic Computing

75   0   0.0 ( 0 )
 Added by Johannes Schemmel
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper presents the concepts behind the BrainScales (BSS) accelerated analog neuromorphic computing architecture. It describes the second-generation BrainScales-2 (BSS-2) version and its most recent in-silico realization, the HICANN-X Application Specific Integrated Circuit (ASIC), as it has been developed as part of the neuromorphic computing activities within the European Human Brain Project (HBP). While the first generation is implemented in an 180nm process, the second generation uses 65nm technology. This allows the integration of a digital plasticity processing unit, a highly-parallel micro processor specially built for the computational needs of learning in an accelerated analog neuromorphic systems. The presented architecture is based upon a continuous-time, analog, physical model implementation of neurons and synapses, resembling an analog neuromorphic accelerator attached to build-in digital compute cores. While the analog part emulates the spike-based dynamics of the neural network in continuous-time, the latter simulates biological processes happening on a slower time-scale, like structural and parameter changes. Compared to biological time-scales, the emulation is highly accelerated, i.e. all time-constants are several orders of magnitude smaller than in biology. Programmable ion channel emulation and inter-compartmental conductances allow the modeling of nonlinear dendrites, back-propagating action-potentials as well as NMDA and Calcium plateau potentials. To extend the usability of the analog accelerator, it also supports vector-matrix multiplication. Thereby, BSS-2 supports inference of deep convolutional networks as well as local-learning with complex ensembles of spiking neurons within the same substrate.



rate research

Read More

To rapidly process temporal information at a low metabolic cost, biological neurons integrate inputs as an analog sum but communicate with spikes, binary events in time. Analog neuromorphic hardware uses the same principles to emulate spiking neural networks with exceptional energy-efficiency. However, instantiating high-performing spiking networks on such hardware remains a significant challenge due to device mismatch and the lack of efficient training algorithms. Here, we introduce a general in-the-loop learning framework based on surrogate gradients that resolves these issues. Using the BrainScaleS-2 neuromorphic system, we show that learning self-corrects for device mismatch resulting in competitive spiking network performance on both vision and speech benchmarks. Our networks display sparse spiking activity with, on average, far less than one spike per hidden neuron and input, perform inference at rates of up to 85 k frames/second, and consume less than 200 mW. In summary, our work sets several new benchmarks for low-energy spiking network processing on analog neuromorphic hardware and paves the way for future on-chip learning algorithms.
This paper presents an extension of the BrainScaleS accelerated analog neuromorphic hardware model. The scalable neuromorphic architecture is extended by the support for multi-compartment models and non-linear dendrites. These features are part of a SI{65}{ anometer} prototype ASIC. It allows to emulate different spike types observed in cortical pyramidal neurons: NMDA plateau potentials, calcium and sodium spikes. By replicating some of the structures of these cells, they can be configured to perform coincidence detection within a single neuron. Built-in plasticity mechanisms can modify not only the synaptic weights, but also the dendritic synaptic composition to efficiently train large multi-compartment neurons. Transistor-level simulations demonstrate the functionality of the analog implementation and illustrate analogies to biological measurements.
Quantum neuromorphic computing physically implements neural networks in brain-inspired quantum hardware to speed up their computation. In this perspective article, we show that this emerging paradigm could make the best use of the existing and near future intermediate size quantum computers. Some approaches are based on parametrized quantum circuits, and use neural network-inspired algorithms to train them. Other approaches, closer to classical neuromorphic computing, take advantage of the physical properties of quantum oscillator assemblies to mimic neurons and compute. We discuss the different implementations of quantum neuromorphic networks with digital and analog circuits, highlight their respective advantages, and review exciting recent experimental results.
Neuromorphic computing is a non-von Neumann computing paradigm that performs computation by emulating the human brain. Neuromorphic systems are extremely energy-efficient and known to consume thousands of times less power than CPUs and GPUs. They have the potential to drive critical use cases such as autonomous vehicles, edge computing and internet of things in the future. For this reason, they are sought to be an indispensable part of the future computing landscape. Neuromorphic systems are mainly used for spike-based machine learning applications, although there are some non-machine learning applications in graph theory, differential equations, and spike-based simulations. These applications suggest that neuromorphic computing might be capable of general-purpose computing. However, general-purpose computability of neuromorphic computing has not been established yet. In this work, we prove that neuromorphic computing is Turing-complete and therefore capable of general-purpose computing. Specifically, we present a model of neuromorphic computing, with just two neuron parameters (threshold and leak), and two synaptic parameters (weight and delay). We devise neuromorphic circuits for computing all the {mu}-recursive functions (i.e., constant, successor and projection functions) and all the {mu}-recursive operators (i.e., composition, primitive recursion and minimization operators). Given that the {mu}-recursive functions and operators are precisely the ones that can be computed using a Turing machine, this work establishes the Turing-completeness of neuromorphic computing.
Machine learning software applications are nowadays ubiquitous in many fields of science and society for their outstanding capability of solving computationally vast problems like the recognition of patterns and regularities in big datasets. One of the main goals of research is the realization of a physical neural network able to perform data processing in a much faster and energy-efficient way than the state-of-the-art technology. Here we show that lattices of exciton-polariton condensates accomplish neuromorphic computing using fast optical nonlinearities and with lower error rate than any previous hardware implementation. We demonstrate that our neural network significantly increases the recognition efficiency compared to the linear classification algorithms on one of the most widely used benchmarks, the MNIST problem, showing a concrete advantage from the integration of optical systems in reservoir computing architectures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا