Do you want to publish a course? Click here

Discovery of two nearby post-T Tauri stellar associations

132   0   0.0 ( 0 )
 Added by Jiaming Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we report the discovery of 2 new stellar associations in close vicinity of the Sun at roughly 180 and 150 pc. These two associations, named as u Tau assoc and e Tau assoc, were detected based on their clustering in a multi-dimensional parameter space including ${alpha}$, ${delta}$, ${mu}_{alpha}$ , ${mu}_{delta}$ and ${pi}$ of Gaia. The fitting of pre-main-sequence model isochrones in their color-magnitude diagrams suggests that the two associations are of about 50 Myr old and the group members lower than ${sim}$0.8 $M_{odot}$ are at the stage of post-T Tauri.



rate research

Read More

We present the results of an optical photometry and high-resolution spectroscopy campaign for a modest sample of X-ray selected stars in the Chamaeleon and Rho Ophiuchus star forming regions. With R~50000 optical spectra, we establish kinematic membership of the parent association and confirm stellar youth for each star in our sample. With the acquisition of new standardized BVIc photometry, in concert with near-infrared data from the literature, we derive age and mass from stellar positions in model-dependent Hertzsprung-Russell diagrams. We compare isochronal ages derived using colour-dependent extinction values finding that, within error bars, ages are the same irrespective of whether E(B-V), E(V-Ic), E(J-H) or E(H-K) is used to establish extinction, although model ages tend to be marginally younger for redder Ecolour values. For Cham I and Eta Cham members we derive ages of ~< 5-6 Myr, whereas our three Eta Cha candidates are more consistent with a ~> 25 Myr post-T Tauri star population. In Rho Ophiuchus, most stars in our sample have isochronal ages <10 Myr. Five objects show evidence of strong infrared excess (Av>5) in the 2MASS colour colour diagram, however in terms of Halpha emission, all stars except RXJ1625.6-2613 are consistent with being weak-lined T-Tauri stars. Spectral energy distributions (SEDs) over the range ~ 4000A < wavelength < 1000 microns, show that only one Chamaeleon star (RXJ1112.7-7637) and three Rho Ophiuchus stars (ROXR1 13, RXJ1625.6-2613 & RXJ1627.1-2419) reveal substantial departures from a bare photosphere.
153 - Erin Mentuch 2008
We estimate cluster ages from lithium depletion in five pre-main-sequence groups found within 100 pc of the Sun: TW Hydrae Association, Eta Chamaeleontis Cluster, Beta Pictoris Moving Group, Tucanae-Horologium Association and AB Doradus Moving Group. We determine surface gravities, effective temperatures and lithium abundances for over 900 spectra through least squares fitting to model-atmosphere spectra. For each group, we compare the dependence of lithium abundance on temperature with isochrones from pre-main-sequence evolutionary tracks to obtain model dependent ages. We find that the Eta Chamaelontis Cluster and the TW Hydrae Association are the youngest, with ages of 12+/-6 Myr and 12+/-8 Myr, respectively, followed by the Beta Pictoris Moving Group at 21+/-9 Myr, the Tucanae-Horologium Association at 27+/-11 Myr, and the AB Doradus Moving Group at an age of at least 45 Myr (where we can only set a lower limit since the models -- unlike real stars -- do not show much lithium depletion beyond this age). Here, the ordering is robust, but the precise ages depend on our choice of both atmospheric and evolutionary models. As a result, while our ages are consistent with estimates based on Hertzsprung-Russell isochrone fitting and dynamical expansion, they are not yet more precise. Our observations do show that with improved models, much stronger constraints should be feasible: the intrinsic uncertainties, as measured from the scatter between measurements from different spectra of the same star, are very low: around 10 K in effective temperature, 0.05 dex in surface gravity, and 0.03 dex in lithium abundance.
Using NASA IRTF SpeX data from 0.8 to 4.5 $mu$m, we determine self-consistently the stellar properties and excess emission above the photosphere for a sample of classical T Tauri stars (CTTS) in the Taurus molecular cloud with varying degrees of accretion. This process uses a combination of techniques from the recent literature as well as observations of weak-line T Tauri stars (WTTS) to account for the differences in surface gravity and chromospheric activity between the TTS and dwarfs, which are typically used as photospheric templates for CTTS. Our improved veiling and extinction estimates for our targets allow us to extract flux-calibrated spectra of the excess in the near-infrared. We find that we are able to produce an acceptable parametric fit to the near-infrared excesses using a combination of up to three blackbodies. In half of our sample, two blackbodies at temperatures of 8000 K and 1600 K suffice. These temperatures and the corresponding solid angles are consistent with emission from the accretion shock on the stellar surface and the inner dust sublimation rim of the disk, respectively. In contrast, the other half requires three blackbodies at 8000, 1800, and 800 K, to describe the excess. We interpret the combined two cooler blackbodies as the dust sublimation wall with either a contribution from the disk surface beyond the wall or curvature of the wall itself, neither of which should have single-temperature blackbody emission. In these fits, we find no evidence of a contribution from optically thick gas inside the inner dust rim.
We present results from adaptive optics imaging of the T Tauri triple system obtained at the Keck and Gemini Observatories in 2015-2019. We fit the orbital motion of T Tau Sb relative to Sa and model the astrometric motion of their center of mass relative to T Tau N. Using the distance measured by Gaia, we derived dynamical masses of M_Sa = 2.05 +/- 0.14 Msun and M_Sb = 0.43 +/- 0.06 Msun. The precision in the masses is expected to improve with continued observations that map the motion through a complete orbital period; this is particularly important as the system approaches periastron passage in 2023. Based on published properties and recent evolutionary tracks, we estimate a mass of ~ 2 Msun for T Tau N, suggesting that T Tau N is similar in mass to T Tau Sa. Narrow-band infrared photometry shows that T Tau N remained relatively constant between late 2017 and early 2019 with an average value of K = 5.54 +/- 0.07 mag. Using T Tau N to calibrate relative flux measurements since 2015, we found that T Tau Sa varied dramatically between 7.0 to 8.8 mag in the K-band over timescales of a few months, while T Tau Sb faded steadily from 8.5 to 11.1 mag in the K-band. Over the 27 year orbital period of the T Tau S binary, both components have shown 3-4 magnitudes of variability in the K-band, relative to T Tau N.
The mechanism for jet formation in the disks of T Tauri stars is poorly understood. Observational benchmarks to launching models can be provided by tracing the physical properties of the kinematic components of the wind and jet in the inner 100 au of the disk surface. In the framework of the GHOsT (GIARPS High-resolution Observations of T Tauri stars) project, we aim to perform a multi-line analysis of the velocity components of the gas in the jet acceleration zone. We analyzed the GIARPS-TNG spectra of six objects in the Taurus-Auriga complex (RY Tau, DG Tau, DL Tau, HN Tau, DO Tau, RW Aur A). Thanks to the combined high-spectral resolution (R=50000-115000) and wide spectral coverage (~400-2400 nm) we observed several O, S+, N, N+, and Fe+ forbidden lines spanning a large range of excitation and ionization conditions. In four objects (DG Tau, HN Tau, DO Tau, RW Aur A), temperature (T_e), electron and total density (n_e, n_H), and fractional ionization (x_e) were derived as a function of velocity through an excitation and ionization model. The abundance of gaseous iron, X(Fe), a probe of the dust content in the jet, was derived in selected velocity channels. The physical parameters vary smoothly with velocity, suggesting a common origin for the different kinematic components. In DG Tau and HN Tau, T_e, x_e, and X(Fe) increase with velocity (roughly from 6000 K, 0.05, 10% X(Fe)_sun to 15000 K, 0.6, 90% X(Fe)_sun). This trend is in agreement with disk-wind models in which the jet is launched from regions of the disk at different radii. In DO Tau and RW Aur A, we infer x_e < 0.1, n_H ~10^6-7 cm^-3, and X(Fe) <~ X(Fe)_sun at all velocities. These findings are tentatively explained by the formation of these jets from dense regions inside the inner, gaseous disk, or as a consequence of their high degree of collimation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا