Do you want to publish a course? Click here

Learning transferable and discriminative features for unsupervised domain adaptation

112   0   0.0 ( 0 )
 Added by Yuntao Du
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Although achieving remarkable progress, it is very difficult to induce a supervised classifier without any labeled data. Unsupervised domain adaptation is able to overcome this challenge by transferring knowledge from a labeled source domain to an unlabeled target domain. Transferability and discriminability are two key criteria for characterizing the superiority of feature representations to enable successful domain adaptation. In this paper, a novel method called textit{learning TransFerable and Discriminative Features for unsupervised domain adaptation} (TFDF) is proposed to optimize these two objectives simultaneously. On the one hand, distribution alignment is performed to reduce domain discrepancy and learn more transferable representations. Instead of adopting textit{Maximum Mean Discrepancy} (MMD) which only captures the first-order statistical information to measure distribution discrepancy, we adopt a recently proposed statistic called textit{Maximum Mean and Covariance Discrepancy} (MMCD), which can not only capture the first-order statistical information but also capture the second-order statistical information in the reproducing kernel Hilbert space (RKHS). On the other hand, we propose to explore both local discriminative information via manifold regularization and global discriminative information via minimizing the proposed textit{class confusion} objective to learn more discriminative features, respectively. We integrate these two objectives into the textit{Structural Risk Minimization} (RSM) framework and learn a domain-invariant classifier. Comprehensive experiments are conducted on five real-world datasets and the results verify the effectiveness of the proposed method.



rate research

Read More

Domain Adaptation aiming to learn a transferable feature between different but related domains has been well investigated and has shown excellent empirical performances. Previous works mainly focused on matching the marginal feature distributions using the adversarial training methods while assuming the conditional relations between the source and target domain remained unchanged, $i.e.$, ignoring the conditional shift problem. However, recent works have shown that such a conditional shift problem exists and can hinder the adaptation process. To address this issue, we have to leverage labelled data from the target domain, but collecting labelled data can be quite expensive and time-consuming. To this end, we introduce a discriminative active learning approach for domain adaptation to reduce the efforts of data annotation. Specifically, we propose three-stage active adversarial training of neural networks: invariant feature space learning (first stage), uncertainty and diversity criteria and their trade-off for query strategy (second stage) and re-training with queried target labels (third stage). Empirical comparisons with existing domain adaptation methods using four benchmark datasets demonstrate the effectiveness of the proposed approach.
Recently, considerable effort has been devoted to deep domain adaptation in computer vision and machine learning communities. However, most of existing work only concentrates on learning shared feature representation by minimizing the distribution discrepancy across different domains. Due to the fact that all the domain alignment approaches can only reduce, but not remove the domain shift. Target domain samples distributed near the edge of the clusters, or far from their corresponding class centers are easily to be misclassified by the hyperplane learned from the source domain. To alleviate this issue, we propose to joint domain alignment and discriminative feature learning, which could benefit both domain alignment and final classification. Specifically, an instance-based discriminative feature learning method and a center-based discriminative feature learning method are proposed, both of which guarantee the domain invariant features with better intra-class compactness and inter-class separability. Extensive experiments show that learning the discriminative features in the shared feature space can significantly boost the performance of deep domain adaptation methods.
Unsupervised domain adaptation (UDA) enables a learning machine to adapt from a labeled source domain to an unlabeled domain under the distribution shift. Thanks to the strong representation ability of deep neural networks, recent remarkable achievements in UDA resort to learning domain-invariant features. Intuitively, the hope is that a good feature representation, together with the hypothesis learned from the source domain, can generalize well to the target domain. However, the learning processes of domain-invariant features and source hypothesis inevitably involve domain-specific information that would degrade the generalizability of UDA models on the target domain. In this paper, motivated by the lottery ticket hypothesis that only partial parameters are essential for generalization, we find that only partial parameters are essential for learning domain-invariant information and generalizing well in UDA. Such parameters are termed transferable parameters. In contrast, the other parameters tend to fit domain-specific details and often fail to generalize, which we term as untransferable parameters. Driven by this insight, we propose Transferable Parameter Learning (TransPar) to reduce the side effect brought by domain-specific information in the learning process and thus enhance the memorization of domain-invariant information. Specifically, according to the distribution discrepancy degree, we divide all parameters into transferable and untransferable ones in each training iteration. We then perform separate updates rules for the two types of parameters. Extensive experiments on image classification and regression tasks (keypoint detection) show that TransPar outperforms prior arts by non-trivial margins. Moreover, experiments demonstrate that TransPar can be integrated into the most popular deep UDA networks and be easily extended to handle any data distribution shift scenarios.
Unsupervised domain adaptation aims to transfer the classifier learned from the source domain to the target domain in an unsupervised manner. With the help of target pseudo-labels, aligning class-level distributions and learning the classifier in the target domain are two widely used objectives. Existing methods often separately optimize these two individual objectives, which makes them suffer from the neglect of the other. However, optimizing these two aspects together is not trivial. To alleviate the above issues, we propose a novel method that jointly optimizes semantic domain alignment and target classifier learning in a holistic way. The joint optimization mechanism can not only eliminate their weaknesses but also complement their strengths. The theoretical analysis also verifies the favor of the joint optimization mechanism. Extensive experiments on benchmark datasets show that the proposed method yields the best performance in comparison with the state-of-the-art unsupervised domain adaptation methods.
145 - Songsong Wu , Yan Yan , Hao Tang 2019
Unsupervised Domain Adaptation (UDA) addresses the problem of performance degradation due to domain shift between training and testing sets, which is common in computer vision applications. Most existing UDA approaches are based on vector-form data although the typical format of data or features in visual applications is multi-dimensional tensor. Besides, current methods, including the deep network approaches, assume that abundant labeled source samples are provided for training. However, the number of labeled source samples are always limited due to expensive annotation cost in practice, making sub-optimal performance been observed. In this paper, we propose to seek discriminative representation for multi-dimensional data by learning a structured dictionary in tensor space. The dictionary separates domain-specific information and class-specific information to guarantee the representation robust to domains. In addition, a pseudo-label estimation scheme is developed to combine with discriminant analysis in the algorithm iteration for avoiding the external classifier design. We perform extensive results on different datasets with limited source samples. Experimental results demonstrates that the proposed method outperforms the state-of-the-art approaches.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا