Do you want to publish a course? Click here

BachGAN: High-Resolution Image Synthesis from Salient Object Layout

107   0   0.0 ( 0 )
 Added by Yandong Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose a new task towards more practical application for image generation - high-quality image synthesis from salient object layout. This new setting allows users to provide the layout of salient objects only (i.e., foreground bounding boxes and categories), and lets the model complete the drawing with an invented background and a matching foreground. Two main challenges spring from this new task: (i) how to generate fine-grained details and realistic textures without segmentation map input; and (ii) how to create a background and weave it seamlessly into standalone objects. To tackle this, we propose Background Hallucination Generative Adversarial Network (BachGAN), which first selects a set of segmentation maps from a large candidate pool via a background retrieval module, then encodes these candidate layouts via a background fusion module to hallucinate a suitable background for the given objects. By generating the hallucinated background representation dynamically, our model can synthesize high-resolution images with both photo-realistic foreground and integral background. Experiments on Cityscapes and ADE20K datasets demonstrate the advantage of BachGAN over existing methods, measured on both visual fidelity of generated images and visual alignment between output images and input layouts.



rate research

Read More

Deep neural network based methods have made a significant breakthrough in salient object detection. However, they are typically limited to input images with low resolutions ($400times400$ pixels or less). Little effort has been made to train deep neural networks to directly handle salient object detection in very high-resolution images. This paper pushes forward high-resolution saliency detection, and contributes a new dataset, named High-Resolution Salient Object Detection (HRSOD). To our best knowledge, HRSOD is the first high-resolution saliency detection dataset to date. As another contribution, we also propose a novel approach, which incorporates both global semantic information and local high-resolution details, to address this challenging task. More specifically, our approach consists of a Global Semantic Network (GSN), a Local Refinement Network (LRN) and a Global-Local Fusion Network (GLFN). GSN extracts the global semantic information based on down-sampled entire image. Guided by the results of GSN, LRN focuses on some local regions and progressively produces high-resolution predictions. GLFN is further proposed to enforce spatial consistency and boost performance. Experiments illustrate that our method outperforms existing state-of-the-art methods on high-resolution saliency datasets by a large margin, and achieves comparable or even better performance than them on widely-used saliency benchmarks. The HRSOD dataset is available at https://github.com/yi94code/HRSOD.
153 - Bo Zhao , Lili Meng , Weidong Yin 2018
Despite significant recent progress on generative models, controlled generation of images depicting multiple and complex object layouts is still a difficult problem. Among the core challenges are the diversity of appearance a given object may possess and, as a result, exponential set of images consistent with a specified layout. To address these challenges, we propose a novel approach for layout-based image generation; we call it Layout2Im. Given the coarse spatial layout (bounding boxes + object categories), our model can generate a set of realistic images which have the correct objects in the desired locations. The representation of each object is disentangled into a specified/certain part (category) and an unspecified/uncertain part (appearance). The category is encoded using a word embedding and the appearance is distilled into a low-dimensional vector sampled from a normal distribution. Individual object representations are composed together using convolutional LSTM, to obtain an encoding of the complete layout, and then decoded to an image. Several loss terms are introduced to encourage accurate and diverse generation. The proposed Layout2Im model significantly outperforms the previous state of the art, boosting the best reported inception score by 24.66% and 28.57% on the very challenging COCO-Stuff and Visual Genome datasets, respectively. Extensive experiments also demonstrate our methods ability to generate complex and diverse images with multiple objects.
98 - Lv Tang , Bo Li , Shouhong Ding 2021
Aiming at discovering and locating most distinctive objects from visual scenes, salient object detection (SOD) plays an essential role in various computer vision systems. Coming to the era of high resolution, SOD methods are facing new challenges. The major limitation of previous methods is that they try to identify the salient regions and estimate the accurate objects boundaries simultaneously with a single regression task at low-resolution. This practice ignores the inherent difference between the two difficult problems, resulting in poor detection quality. In this paper, we propose a novel deep learning framework for high-resolution SOD task, which disentangles the task into a low-resolution saliency classification network (LRSCN) and a high-resolution refinement network (HRRN). As a pixel-wise classification task, LRSCN is designed to capture sufficient semantics at low-resolution to identify the definite salient, background and uncertain image regions. HRRN is a regression task, which aims at accurately refining the saliency value of pixels in the uncertain region to preserve a clear object boundary at high-resolution with limited GPU memory. It is worth noting that by introducing uncertainty into the training process, our HRRN can well address the high-resolution refinement task without using any high-resolution training data. Extensive experiments on high-resolution saliency datasets as well as some widely used saliency benchmarks show that the proposed method achieves superior performance compared to the state-of-the-art methods.
72 - Wei Sun , Tianfu Wu 2020
With the remarkable recent progress on learning deep generative models, it becomes increasingly interesting to develop models for controllable image synthesis from reconfigurable inputs. This paper focuses on a recent emerged task, layout-to-image, to learn generative models that are capable of synthesizing photo-realistic images from spatial layout (i.e., object bounding boxes configured in an image lattice) and style (i.e., structural and appearance variations encoded by latent vectors). This paper first proposes an intuitive paradigm for the task, layout-to-mask-to-image, to learn to unfold object masks of given bounding boxes in an input layout to bridge the gap between the input layout and synthesized images. Then, this paper presents a method built on Generative Adversarial Networks for the proposed layout-to-mask-to-image with style control at both image and mask levels. Object masks are learned from the input layout and iteratively refined along stages in the generator network. Style control at the image level is the same as in vanilla GANs, while style control at the object mask level is realized by a proposed novel feature normalization scheme, Instance-Sensitive and Layout-Aware Normalization. In experiments, the proposed method is tested in the COCO-Stuff dataset and the Visual Genome dataset with state-of-the-art performance obtained.
Advances in face rotation, along with other face-based generative tasks, are more frequent as we advance further in topics of deep learning. Even as impressive milestones are achieved in synthesizing faces, the importance of preserving identity is needed in practice and should not be overlooked. Also, the difficulty should not be more for data with obscured faces, heavier poses, and lower quality. Existing methods tend to focus on samples with variation in pose, but with the assumption data is high in quality. We propose a generative adversarial network (GAN) -based model to generate high-quality, identity preserving frontal faces from one or multiple low-resolution (LR) faces with extreme poses. Specifically, we propose SuperFront-GAN (SF-GAN) to synthesize a high-resolution (HR), frontal face from one-to-many LR faces with various poses and with the identity-preserved. We integrate a super-resolution (SR) side-view module into SF-GAN to preserve identity information and fine details of the side-views in HR space, which helps model reconstruct high-frequency information of faces (i.e., periocular, nose, and mouth regions). Moreover, SF-GAN accepts multiple LR faces as input, and improves each added sample. We squeeze additional gain in performance with an orthogonal constraint in the generator to penalize redundant latent representations and, hence, diversify the learned features space. Quantitative and qualitative results demonstrate the superiority of SF-GAN over others.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا