Do you want to publish a course? Click here

In situ modification of delafossite type PdCoO2 bulk single crystal for reversible hydrogen sorption and fast hydrogen evolution

87   0   0.0 ( 0 )
 Added by Yan Sun
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The observation of extraordinarily high conductivity in delafossite-type PdCoO2 is of great current interest, and there is some evidence that electrons behave like a fluid when flowing in bulk crystals of PdCoO2. Thus, this material is an ideal platform for the study of the electron transfer processes in heterogeneous reactions. Here, we report the use of bulk single crystal PdCoO2 as a promising electrocatalyst for hydrogen evolution reactions (HERs). An overpotential of only 31 mV results in a current density of 10 mA cm^(-2), accompanied by high long-term stability. We have precisely determined that the crystal surface structure is modified after electrochemical activation with the formation of strained Pd nanoclusters in the surface layer. These nanoclusters exhibit reversible hydrogen sorption and desorption, creating more active sites for hydrogen access. The bulk PdCoO2 single crystal with ultra-high conductivity, which acts as a natural substrate for the Pd nanoclusters, provides a high-speed channel for electron transfer

rate research

Read More

The Pd, and Pt based ABO2 delafossites are a unique class of layered, triangular oxides with 2D electronic structure and a large conductivity that rivals the noble metals. Here, we report successful growth of the metallic delafossite PdCoO2 by molecular beam epitaxy (MBE). The key challenge is controlling the oxidation of Pd in the MBE environment where phase-segregation is driven by the reduction of PdCoO2 to cobalt oxide and metallic palladium. This is overcome by combining low temperature (300 {deg}C) atomic layer-by-layer MBE growth in the presence of reactive atomic oxygen with a post-growth high-temperature anneal. Thickness dependence (5-265 nm) reveals that in the thin regime (<75 nm), the resistivity scales inversely with thickness, likely dominated by surface scattering; for thicker films the resistivity approaches the values reported for the best bulk-crystals at room temperature, but the low temperature resistivity is limited by structural twins. This work shows that the combination of MBE growth and a post-growth anneal provides a route to creating high quality films in this interesting family of layered, triangular oxides.
As a result of experimental studies of the single-crystal iron-chalcogenide compound FeTe0.65Se0.35, the effect of structural transitions caused by hydrogen sorption on the magnetic and current-carrying properties of a superconductor has been established. An increase in the volume-averaged effective pinning potential (and the associated critical current density) after the process of hydrogen sorption at temperatures up to 150 {deg}C - 200 {deg}C can be explained by the appearance of additional pinning centers due to the local action of implanted H ions on its crystal structure and electronic states. It was confirmed that hydrogenation is an efficient tool for increasing flux pining properties of superconductors.
We perform ab initio calculations of hydrogen-based tunneling defects in alumina to identify deleterious two-level systems (TLS) in superconducting qubits. The defects analyzed include bulk hydrogenated Al vacancies, bulk hydrogen interstitial defects, and a surface OH rotor. The formation energies of the defects are first computed for an Al- and O-rich environment to give the likelihood of defect occurrence during growth. The potential energy surfaces are then computed and the corresponding dipole moments are evaluated to determine the coupling of the defects to an electric field. Finally, the tunneling energy is computed for the hydrogen defect and the analogous deuterium defect, providing an estimate of the TLS energy and the corresponding frequency for photon absorption. We predict that hydrogenated cation vacancy defects will form a significant density of GHz-frequency TLSs in alumina.
Large scale implementation of electrochemical water splitting for hydrogen evolution requires cheap and efficient catalysts to replace expensive platinum. Molybdenum disulfide is one of the most promising alternative catalysts but its intrinsic activity is still inferior to platinum. There is therefore a need to explore new active site origins in molybdenum disulfide with ultrafast reaction kinetics and to understand their mechanisms. Here, we report a universal cold hydrogen plasma reduction method for synthesizing different single atoms sitting on two-dimensional monolayers. In case of molybdenum disulfide, we design and identify a new type of active site, i.e., unsaturated Mo single atoms on cogenetic monolayer molybdenum disulfide. The catalyst shows exceptional intrinsic activity with a Tafel slope of 35.1 mV dec-1 and a turnover frequency of ~10^3 s-1 at 100 mV, based on single flake microcell measurements. Theoretical studies indicate that coordinately unsaturated Mo single atoms sitting on molybdenum disulfide increase the bond strength between adsorbed hydrogen atoms and the substrates through hybridization, leading to fast hydrogen adsorption/desorption kinetics and superior hydrogen evolution activity. This work shines fresh light on preparing highly-efficient electrocatalysts for water splitting and other electrochemical processes, as well as provides a general method to synthesize single atoms on two-dimensional monolayers.
N{o}rskov and collaborators proposed a simple kinetic model to explain the volcano relation for the hydrogen evolution reaction on transition metal surfaces in such that $ j_0= k_0 f({Delta}G_H)$ where j_0 is the exchange current density, $f({Delta}G_H)$ is a function of the hydrogen adsorption free energy ${Delta}G_H$ as computed from density functional theory, and $k_0$ is a universal rate constant. Herein, focusing on the hydrogen evolution reaction in acidic medium, we revisit the original experimental data and find that the fidelity of this kinetic model can be significantly improved by invoking metal-dependence on $k_0$ such that the logarithm of $k_0$ linearly depends on the absolute value of ${Delta}G_H$. We further confirm this relationship using additional experimental data points obtained from a critical review of the available literature. Our analyses show that the new model decreases the discrepancy between calculated and experimental exchange current density values by up to four orders of magnitude. Furthermore, we show the model can be further improved using machine learning and statistical inference methods that integrate additional material properties
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا