Do you want to publish a course? Click here

Entanglement between Distant Macroscopic Mechanical and Spin Systems

79   0   0.0 ( 0 )
 Added by Rodrigo Thomas
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Entanglement is a vital property of multipartite quantum systems, characterised by the inseparability of quantum states of objects regardless of their spatial separation. Generation of entanglement between increasingly macroscopic and disparate systems is an ongoing effort in quantum science which enables hybrid quantum networks, quantum-enhanced sensing, and probing the fundamental limits of quantum theory. The disparity of hybrid systems and the vulnerability of quantum correlations have thus far hampered the generation of macroscopic hybrid entanglement. Here we demonstrate, for the first time, generation of an entangled state between the motion of a macroscopic mechanical oscillator and a collective atomic spin oscillator, as witnessed by an Einstein-Podolsky-Rosen variance below the separability limit, $0.83 pm 0.02<1$. The mechanical oscillator is a millimeter-size dielectric membrane and the spin oscillator is an ensemble of $10^9$ atoms in a magnetic field. Light propagating through the two spatially separated systems generates entanglement due to the collective spin playing the role of an effective negative-mass reference frame and providing, under ideal circumstances, a backaction-free subspace; in the experiment, quantum backaction is suppressed by 4.6 dB. Our results pave the road towards measurement of motion beyond the standard quantum limits of sensitivity with applications in force, acceleration,and gravitational wave detection, as well as towards teleportation-based protocols in hybrid quantum networks.



rate research

Read More

We introduce a modification of the standard entanglement swapping protocol where the generation of entanglement between two distant modes is realized and verified using only local optical measurements. We show, indeed, that a simple condition on the purity of the initial state involving also an ancillary mode is sufficient to guarantee the success of the protocol by local measurements {M. Abdi textit{et al.}, Phys. Rev. Lett. textbf{109}, 143601 (2012)}]. We apply the proposed protocol to a tripartite optomechanical system where the never interacting mechanical modes become entangled and certified using only local optical measurements.
We provide an argument to infer stationary entanglement between light and a mechanical oscillator based on continuous measurement of light only. We propose an experimentally realizable scheme involving an optomechanical cavity driven by a resonant, continuous-wave field operating in the non-sideband-resolved regime. This corresponds to the conventional configuration of an optomechanical position or force sensor. We show analytically that entanglement between the mechanical oscillator and the output field of the optomechanical cavity can be inferred from the measurement of squeezing in (generalized) Einstein-Podolski-Rosen quadratures of suitable temporal modes of the stationary light field. Squeezing can reach levels of up to 50% of noise reduction below shot noise in the limit of large quantum cooperativity. Remarkably, entanglement persists even in the opposite limit of small cooperativity. Viewing the optomechanical device as a position sensor, entanglement between mechanics and light is an instance of object-apparatus entanglement predicted by quantum measurement theory.
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic $Lambda$-system and quantum erasure of the Raman-photon path. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for $|psi^{(+)}rangle$ and $|psi^{(-)}rangle$ states of $61.6pm2.3%$ and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
We propose a protocol for state transfer and entanglement generation between two distant spin qubits (sender and receiver) that have different energies. The two qubits are permanently coupled to a far off-resonant spin-chain, and the qubit of the sender is driven by an external field, which provides the energy required to bridge the energy gap between the sender and the receiver. State transfer and entanglement generation are achieved via virtual single-photon and multi-photon transitions to the eigenmodes of the channel.
We study the emergence of bipartite entanglement between a pair of spins weakly connected to the ends of a linear disordered $XY$ spin-1/2 channel. We analyze how their concurrence responds to structural and on-site fluctuations embodied by long-range spatially-correlated sequences. We show that the end-to-end entanglement is very robust against disorder and asymmetries in the channel provided that the degree of correlations are strong enough and both entangling parties are tuned accordingly. Our results offer further alternatives in the design of stable quantum communication protocols via imperfect channels.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا