Detectors inherently capable of resolving photon numbers have undergone a significant development recently, and this is expected to affect multiplexed periodic single-photon sources where such detectors can find their applications. We analyze various spatially and time-multiplexed periodic single-photon source arrangements with photon-number-resolving detectors, partly to identify the cases when they outperform those with threshold detectors. We develop a full statistical description of these arrangements in order to optimize such systems with respect to maximal single-photon probability, taking into account all relevant loss mechanisms. The model is suitable for the description of all spatial and time multiplexing schemes. Our detailed analysis of symmetric spatial multiplexing identifies a particular range of loss parameters in which the use of the new type of detectors leads to an improvement. Photon number resolution opens an additional possibility for optimizing the system in that the heralding strategy can be defined in terms of actual detected photon numbers. Our results show that this kind of optimization opens an additional parameter range of improved efficiency. Moreover, this higher efficiency can be achieved by using less multiplexed units, i.e., smaller system size as compared to threshold-detector schemes. We also extend our investigation to certain time-multiplexed schemes of actual experimental relevance. We find that the highest single-photon probability is 0.907 that can be achieved by binary bulk time multiplexers using photon-number-resolving detectors.