No Arabic abstract
One of the most intriguing topological features of open systems is exhibiting exceptional point (EP) singularities. Apart from the widely explored second-order EPs (EP2s), the explorations of higher-order EPs in any system requires more complex topology, which is still a challenge. Here, we encounter a third-order EP (EP3) for the first time in a simple fabrication feasible gain-loss assisted optical microcavity. Using scattering-matrix formalism, we study the simultaneous interactions between three successive coupled states around two EP2s, which yield an EP3. Following an adiabatic parametric variation around the identified EP3, we present a robust successive-state-conversion mechanism among three coupled states. The proposed scheme indeed opens a unique platform to manipulate light in integrated devices.
Gain and loss modulation are ubiquitous in nature. An exceptional point arises when both the eigenvectors and eigenvalues coalesce, which in a physical system can be achieved by engineering the gain and loss coefficients, leading to a wide variety of counter-intuitive phenomena. In this work we demonstrate the existence of an exceptional point in an exciton polariton condensate in a double-well potential. Remarkably, near the exceptional point, the polariton condensate localized in one potential well can be switched off by an additional optical excitation in the other well with very low (far below threshold) laser power which surprisingly induces additional loss into the system. Increasing the power of the additional laser leads to a situation in which gain dominates in both wells again, such that the polaritons re-condense with almost the same density in the two potential wells. Our results offer a simple way to optically manipulate the polariton lasing process in a double-well potential structure. Extending such configuration to complex potential well lattices offers exciting prospects to explore high-order exceptional points and non-Hermitian topological photonics in a non-equilibrium many-body system.
An experimental setup of three coupled $mathcal{PT}$-symmetric wave guides showing the characteristics of a third-order exceptional point (EP3) has been investigated in an idealized model of three delta-functions wave guides in W.~D. Heiss and G.~Wunner, J. Phys. A 49, 495303 (2016). Here we extend these investigations to realistic, extended wave guide systems. We place major focus on the strong parameter sensitivity rendering the discovery of an EP3 a challenging task. We also investigate the vicinity of the EP3 for further branch points of either cubic or square root type behavior.
We study theoretical models of three coupled wave guides with a $mathcal{PT}$-symmetric distribution of gain and loss. A realistic matrix model is developed in terms of a three-mode expansion. By comparing with a previously postulated matrix model it is shown how parameter ranges with good prospects of finding a third-order exceptional point (EP3) in an experimentally feasible arrangement of semiconductors can be determined. In addition it is demonstrated that continuous distributions of exceptional points, which render the discovery of the EP3 difficult, are not only a feature of extended wave guides but appear also in an idealised model of infinitely thin guides shaped by delta functions.
Dynamical encirclement of an Exceptional Point (EP) and corresponding time-asymmetric mode evolution properties due to breakdown in adiabatic theorem have been a key to range of exotic physical effects in various open atomic, molecular and optical systems. Here, exploiting a gain-loss assisted dual-mode optical waveguide that hosts a dynamical EP-encirclement scheme, we have explored enhanced nonreciprocal effect in the dynamics of light with onset of saturable nonlinearity in the optical medium. We propose a prototype waveguide-based isolation scheme with judicious tuning of nonlinearity level where one can pass only a chosen mode in any of the desired directions as per device requirement. The deliberate presence of EP enormously enhances the nonreciprocal transmission contrast even up to 40 dB over the proposed device length with a scope of further scalability. This exclusive topologically robust mode selective all-optical isolation scheme will certainly offer opportunities in integrated photonic circuits for efficient coupling operation from external sources and improve device performances.
Exceptional points (EPs), i.e., non-Hermitian degeneracies at which eigenvalues and eigenvectors coalesce, can be realized by tuning the gain/loss contrast of different modes in non-Hermitian systems or by engineering the asymmetric coupling of modes. Here we demonstrate a mechanism that can achieve EPs of arbitrary order by employing the non-reciprocal coupling of spinning cylinders sitting on a dielectric waveguide. The spinning motion breaks the time-reversal symmetry and removes the degeneracy of opposite chiral modes of the cylinders. Under the excitation of a linearly polarized plane wave, the chiral mode of one cylinder can unidirectionally couple to the same mode of the other cylinder via the spin-orbit interaction associated with the evanescent wave of the waveguide. The structure can give rise to arbitrary-order EPs that are robust against spin-flipping perturbations, in contrast to conventional systems relying on spin-selective excitations. In addition, we show that higher-order EPs in the proposed system are accompanied by enhanced optical isolation, which may find applications in designing novel optical isolators, nonreciprocal optical devices, and topological photonics.