No Arabic abstract
We propose a new application of embedding techniques for problem retrieval in adaptive tutoring. The objective is to retrieve problems whose mathematical concepts are similar. There are two challenges: First, like sentences, problems helpful to tutoring are never exactly the same in terms of the underlying concepts. Instead, good problems mix concepts in innovative ways, while still displaying continuity in their relationships. Second, it is difficult for humans to determine a similarity score that is consistent across a large enough training set. We propose a hierarchical problem embedding algorithm, called Prob2Vec, that consists of abstraction and embedding steps. Prob2Vec achieves 96.88% accuracy on a problem similarity test, in contrast to 75% from directly applying state-of-the-art sentence embedding methods. It is interesting that Prob2Vec is able to distinguish very fine-grained differences among problems, an ability humans need time and effort to acquire. In addition, the sub-problem of concept labeling with imbalanced training data set is interesting in its own right. It is a multi-label problem suffering from dimensionality explosion, which we propose ways to ameliorate. We propose the novel negative pre-training algorithm that dramatically reduces false negative and positive ratios for classification, using an imbalanced training data set.
This paper presents CLEAR, a retrieval model that seeks to complement classical lexical exact-match models such as BM25 with semantic matching signals from a neural embedding matching model. CLEAR explicitly trains the neural embedding to encode language structures and semantics that lexical retrieval fails to capture with a novel residual-based embedding learning method. Empirical evaluations demonstrate the advantages of CLEAR over state-of-the-art retrieval models, and that it can substantially improve the end-to-end accuracy and efficiency of reranking pipelines.
A number of introductory textbooks for Haskell use calculations right from the start to give the reader insight into the evaluation of expressions and the behavior of functional programs. Many programming concepts that are important in the functional programming paradigm, such as recursion, higher-order functions, pattern-matching, and lazy evaluation, can be partially explained by showing a stepwise computation. A student gets a better understanding of these concepts if she performs these evaluation steps herself. Tool support for experimenting with the evaluation of Haskell expressions is currently lacking. In this paper we present a prototype implementation of a stepwise evaluator for Haskell expressions that supports multiple evaluation strategies, specifically targeted at education. Besides performing evaluation steps the tool also diagnoses steps that are submitted by a student, and provides feedback. Instructors can add or change function definitions without knowledge of the tools internal implementation. We discuss some preliminary results of a small survey about the tool.
An Intelligent Tutoring System (ITS) has been shown to improve students learning outcomes by providing a personalized curriculum that addresses individual needs of every student. However, despite the effectiveness and efficiency that ITS brings to students learning process, most of the studies in ITS research have conducted less effort to design the interface of ITS that promotes students interest in learning, motivation and engagement by making better use of AI features. In this paper, we explore AI-driven design for the interface of ITS describing diagnostic feedback for students problem-solving process and investigate its impacts on their engagement. We propose several interface designs powered by different AI components and empirically evaluate their impacts on student engagement through Santa, an active mobile ITS. Controlled A/B tests conducted on more than 20K students in the wild show that AI-driven interface design improves the factors of engagement by up to 25.13%.
While neural network approaches are achieving breakthrough performance in the natural language related fields, there have been few similar attempts at mathematical language related tasks. In this study, we explore the potential of applying neural representation techniques to Mathematical Information Retrieval (MIR) tasks. In more detail, we first briefly analyze the characteristic differences between natural language and mathematical language. Then we design a symbol2vec method to learn the vector representations of formula symbols (numbers, variables, operators, functions, etc.) Finally, we propose a formula2vec based MIR approach and evaluate its performance. Preliminary experiment results show that there is a promising potential for applying formula embedding models to mathematical language representation and MIR tasks.
Due to their on-body and ubiquitous nature, wearables can generate a wide range of unique sensor data creating countless opportunities for deep learning tasks. We propose DeepWear, a deep learning (DL) framework for wearable devices to improve the performance and reduce the energy footprint. DeepWear strategically offloads DL tasks from a wearable device to its paired handheld device through local network. Compared to the remote-cloud-based offloading, DeepWear requires no Internet connectivity, consumes less energy, and is robust to privacy breach. DeepWear provides various novel techniques such as context-aware offloading, strategic model partition, and pipelining support to efficiently utilize the processing capacity from nearby paired handhelds. Deployed as a user-space library, DeepWear offers developer-friendly APIs that are as simple as those in traditional DL libraries such as TensorFlow. We have implemented DeepWear on the Android OS and evaluated it on COTS smartphones and smartwatches with real DL models. DeepWear brings up to 5.08X and 23.0X execution speedup, as well as 53.5% and 85.5% energy saving compared to wearable-only and handheld-only strategies, respectively.