Do you want to publish a course? Click here

Multifactorial Cellular Genetic Algorithm (MFCGA): Algorithmic Design, Performance Comparison and Genetic Transferability Analysis

118   0   0.0 ( 0 )
 Added by Javier Del Ser Dr.
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Multitasking optimization is an incipient research area which is lately gaining a notable research momentum. Unlike traditional optimization paradigm that focuses on solving a single task at a time, multitasking addresses how multiple optimization problems can be tackled simultaneously by performing a single search process. The main objective to achieve this goal efficiently is to exploit synergies between the problems (tasks) to be optimized, helping each other via knowledge transfer (thereby being referred to as Transfer Optimization). Furthermore, the equally recent concept of Evolutionary Multitasking (EM) refers to multitasking environments adopting concepts from Evolutionary Computation as their inspiration for the simultaneous solving of the problems under consideration. As such, EM approaches such as the Multifactorial Evolutionary Algorithm (MFEA) has shown a remarkable success when dealing with multiple discrete, continuous, single-, and/or multi-objective optimization problems. In this work we propose a novel algorithmic scheme for Multifactorial Optimization scenarios - the Multifactorial Cellular Genetic Algorithm (MFCGA) - that hinges on concepts from Cellular Automata to implement mechanisms for exchanging knowledge among problems. We conduct an extensive performance analysis of the proposed MFCGA and compare it to the canonical MFEA under the same algorithmic conditions and over 15 different multitasking setups (encompassing different reference instances of the discrete Traveling Salesman Problem). A further contribution of this analysis beyond performance benchmarking is a quantitative examination of the genetic transferability among the problem instances, eliciting an empirical demonstration of the synergies emerged between the different optimization tasks along the MFCGA search process.



rate research

Read More

Transfer Optimization is an incipient research area dedicated to solving multiple optimization tasks simultaneously. Among the different approaches that can address this problem effectively, Evolutionary Multitasking resorts to concepts from Evolutionary Computation to solve multiple problems within a single search process. In this paper we introduce a novel adaptive metaheuristic algorithm to deal with Evolutionary Multitasking environments coined as Adaptive Transfer-guided Multifactorial Cellular Genetic Algorithm (AT-MFCGA). AT-MFCGA relies on cellular automata to implement mechanisms in order to exchange knowledge among the optimization problems under consideration. Furthermore, our approach is able to explain by itself the synergies among tasks that were encountered and exploited during the search, which helps us to understand interactions between related optimization tasks. A comprehensive experimental setup is designed to assess and compare the performance of AT-MFCGA to that of other renowned evolutionary multitasking alternatives (MFEA and MFEA-II). Experiments comprise 11 multitasking scenarios composed of 20 instances of 4 combinatorial optimization problems, yielding the largest discrete multitasking environment solved to date. Results are conclusive in regard to the superior quality of solutions provided by AT-MFCGA with respect to the rest of the methods, which are complemented by a quantitative examination of the genetic transferability among tasks throughout the search process.
One of the key difficulties in using estimation-of-distribution algorithms is choosing the population size(s) appropriately: Too small values lead to genetic drift, which can cause enormous difficulties. In the regime with no genetic drift, however, often the runtime is roughly proportional to the population size, which renders large population sizes inefficient. Based on a recent quantitative analysis which population sizes lead to genetic drift, we propose a parameter-less version of the compact genetic algorithm that automatically finds a suitable population size without spending too much time in situations unfavorable due to genetic drift. We prove a mathematical runtime guarantee for this algorithm and conduct an extensive experimental analysis on four classic benchmark problems both without and with additive centered Gaussian posterior noise. The former shows that under a natural assumption, our algorithm has a performance very similar to the one obtainable from the best problem-specific population size. The latter confirms that missing the right population size in the original cGA can be detrimental and that previous theory-based suggestions for the population size can be far away from the right values; it also shows that our algorithm as well as a previously proposed parameter-less variant of the cGA based on parallel runs avoid such pitfalls. Comparing the two parameter-less approaches, ours profits from its ability to abort runs which are likely to be stuck in a genetic drift situation.
148 - Keki Burjorjee 2009
The pace of progress in the fields of Evolutionary Computation and Machine Learning is currently limited -- in the former field, by the improbability of making advantageous extensions to evolutionary algorithms when their capacity for adaptation is poorly understood, and in the latter by the difficulty of finding effective semi-principled reductions of hard real-world problems to relatively simple optimization problems. In this paper we explain why a theory which can accurately explain the simple genetic algorithms remarkable capacity for adaptation has the potential to address both these limitations. We describe what we believe to be the impediments -- historic and analytic -- to the discovery of such a theory and highlight the negative role that the building block hypothesis (BBH) has played. We argue based on experimental results that a fundamental limitation which is widely believed to constrain the SGAs adaptive ability (and is strongly implied by the BBH) is in fact illusionary and does not exist. The SGA therefore turns out to be more powerful than it is currently thought to be. We give conditions under which it becomes feasible to numerically approximate and study the multivariate marginals of the search distribution of an infinite population SGA over multiple generations even when its genomes are long, and explain why this analysis is relevant to the riddle of the SGAs remarkable adaptive abilities.
We present a novel Auxiliary Truth enhanced Genetic Algorithm (GA) that uses logical or mathematical constraints as a means of data augmentation as well as to compute loss (in conjunction with the traditional MSE), with the aim of increasing both data efficiency and accuracy of symbolic regression (SR) algorithms. Our method, logic-guided genetic algorithm (LGGA), takes as input a set of labelled data points and auxiliary truths (ATs) (mathematical facts known a priori about the unknown function the regressor aims to learn) and outputs a specially generated and curated dataset that can be used with any SR method. Three key insights underpin our method: first, SR users often know simple ATs about the function they are trying to learn. Second, whenever an SR system produces a candidate equation inconsistent with these ATs, we can compute a counterexample to prove the inconsistency, and further, this counterexample may be used to augment the dataset and fed back to the SR system in a corrective feedback loop. Third, the value addition of these ATs is that their use in both the loss function and the data augmentation process leads to better rates of convergence, accuracy, and data efficiency. We evaluate LGGA against state-of-the-art SR tools, namely, Eureqa and TuringBot on 16 physics equations from The Feynman Lectures on Physics book. We find that using these SR tools in conjunction with LGGA results in them solving up to 30.0% more equations, needing only a fraction of the amount of data compared to the same tool without LGGA, i.e., resulting in up to a 61.9% improvement in data efficiency.
This work aims at optimizing injection networks, which consist in adding a set of long-range links (called bypass links) in mobile multi-hop ad hoc networks so as to improve connectivity and overcome network partitioning. To this end, we rely on small-world network properties, that comprise a high clustering coefficient and a low characteristic path length. We investigate the use of two genetic algorithms (generational and steady-state) to optimize three instances of this topology control problem and present results that show initial evidence of their capacity to solve it.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا