Do you want to publish a course? Click here

Long-wavelength infrared photovoltaic heterodyne receivers using patch-antenna quantum cascade detectors

148   0   0.0 ( 0 )
 Added by Azzurra Bigioli
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum cascade detectors (QCD) are unipolar infrared devices where the transport of the photo excited carriers takes place through confined electronic states, without an applied bias. In this photovoltaic mode, the detectors noise is not dominated by a dark shot noise process, therefore, performances are less degraded at high temperature with respect to photoconductive detectors. This work describes a 9 um QCD embedded into a patch-antenna metamaterial which operates with state-of-the-art performances. The metamaterial gathers photons on a collection area, Acoll, much bigger than the geometrical area of the detector, improving the signal to noise ratio up to room temperature. The background-limited detectivity at 83 K is 5.5 x 10^10 cm Hz^1/2 W^-1, while at room temperature, the responsivity is 50 mA/W at 0 V bias. Patch antenna QCD is an ideal receiver for a heterodyne detection set-up, where a signal at a frequency 1.4 GHz and T=295 K is reported as first demonstration of uncooled 9um photovoltaic receivers with GHz electrical bandwidth. These findings guide the research towards uncooled IR quantum limited detection.



rate research

Read More

A room-temperature mid-infrared (9 um) heterodyne system based on high-performance unipolar optoelectronic devices is presented. The local oscillator (LO) is a quantum cascade laser, while the receiver is an antenna coupled quantum well infrared photodetector optimized to operate in a microcavity configuration. Measurements of the saturation intensity show that these receivers have a linear response up to very high optical power, an essential feature for heterodyne detection. By an accurate passive stabilization of the local oscillator and minimizing the optical feed-back the system reaches, at room temperature, a record value of noise equivalent power of 30 pW at 9um. Finally, it is demonstrated that the injection of microwave signal into our receivers shifts the heterodyne beating over the bandwidth of the devices. This mixing property is a unique valuable function of these devices for signal treatment.
The self-powered sensing system could harness ambient energy to power the sensor without the need for external electrical energy. Recently, the concept of photovoltaic (PV) self-powered gas sensing has aroused wider attentions due to room-temperature operation, low power consumption, small size and potential applications. The PV self-powered gas sensors integrate the photovoltaic effects and the gas sensing function into a single chip, which could truly achieve the goal of zero power consumption for an independent gas sensing device. As an emerging concept, the PV self-powered gas sensing has been achieved by using different strategies, including integrated gas sensor and solar cell, integrated light filter and solar cell, gas-sensitive heterojunction photovoltaics, and gas-sensitive lateral photovoltaics, respectively. The purpose of this review is to summarize recent advances of PV self-powered gas sensing and also remark on the directions for future research in this topic.
We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of $0.6times10^4$ photons/(s$cdot$mW$cdot$MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.
We demonstrate waveguide-integrated superconducting nanowire single-photon detectors on thin-film lithium niobate (LN). Using a 250 um-long NbN superconducting nanowire lithographically defined on top of a 125 um-long LN nanowaveguide, on-chip detection efficiency of 46% is realized with simultaneous high performance in dark count rate and timing jitter. As LN possesses high second-order nonlinear c{hi}(2) and electro-optic properties, an efficient single-photon detector on thin-film LN opens up the possibility to construct small scale fully-integrated quantum photonic chip which includes single-photon sources, filters, tunable quantum gates and detectors.
Graphene is a very attractive material for broadband photodetection in hyperspectral imaging and sensing systems. However, its potential use has been hindered by tradeoffs between the responsivity, bandwidth, and operation speed of existing graphene photodetectors. Here, we present engineered photoconductive nanostructures based on gold-patched graphene nanoribbons, which enable simultaneous broadband and ultrafast photodetection with high responsivity. These nanostructures merge the advantages of broadband optical absorption, ultrafast photocarrier transport, and carrier multiplication in graphene nanoribbons with the ultrafast transport of photocarriers to the gold patches before recombination. Through this approach, high-responsivity operation is achieved without the use of bandwidth- and speed-limiting quantum dots, defect states, or tunneling barriers. We demonstrate high-responsivity photodetection from the visible to the infrared regime (0.6 A/W at 0.8 {mu}m and 11.5 A/W at 20 {mu}m) with operation speeds exceeding 50 GHz. Our results demonstrate an improvement of the response times by more than seven orders of magnitude and an increase in bandwidths of one order of magnitude compared to those of higher-responsivity graphene photodetectors based on quantum dots and tunneling barriers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا