No Arabic abstract
With the widespread adoption of the quantified self movement, an increasing number of users rely on mobile applications to monitor their physical activity through their smartphones. Granting to applications a direct access to sensor data expose users to privacy risks. Indeed, usually these motion sensor data are transmitted to analytics applications hosted on the cloud leveraging machine learning models to provide feedback on their health to users. However, nothing prevents the service provider to infer private and sensitive information about a user such as health or demographic attributes.In this paper, we present DySan, a privacy-preserving framework to sanitize motion sensor data against unwanted sensitive inferences (i.e., improving privacy) while limiting the loss of accuracy on the physical activity monitoring (i.e., maintaining data utility). To ensure a good trade-off between utility and privacy, DySan leverages on the framework of Generative Adversarial Network (GAN) to sanitize the sensor data. More precisely, by learning in a competitive manner several networks, DySan is able to build models that sanitize motion data against inferences on a specified sensitive attribute (e.g., gender) while maintaining a high accuracy on activity recognition. In addition, DySan dynamically selects the sanitizing model which maximize the privacy according to the incoming data. Experiments conducted on real datasets demonstrate that DySan can drasticallylimit the gender inference to 47% while only reducing the accuracy of activity recognition by 3%.
There is growing concern about how personal data are used when users grant applications direct access to the sensors of their mobile devices. In fact, high resolution temporal data generated by motion sensors reflect directly the activities of a user and indirectly physical and demographic attributes. In this paper, we propose a feature learning architecture for mobile devices that provides flexible and negotiable privacy-preserving sensor data transmission by appropriately transforming raw sensor data. The objective is to move from the current binary setting of granting or not permission to an application, toward a model that allows users to grant each application permission over a limited range of inferences according to the provided services. The internal structure of each component of the proposed architecture can be flexibly changed and the trade-off between privacy and utility can be negotiated between the constraints of the user and the underlying application. We validated the proposed architecture in an activity recognition application using two real-world datasets, with the objective of recognizing an activity without disclosing gender as an example of private information. Results show that the proposed framework maintains the usefulness of the transformed data for activity recognition, with an average loss of only around three percentage points, while reducing the possibility of gender classification to around 50%, the target random guess, from more than 90% when using raw sensor data. We also present and distribute MotionSense, a new dataset for activity and attribute recognition collected from motion sensors.
Resource and cost constraints remain a challenge for wireless sensor network security. In this paper, we propose a new approach to protect confidentiality against a parasitic adversary, which seeks to exploit sensor networks by obtaining measurements in an unauthorized way. Our low-complexity solution, GossiCrypt, leverages on the large scale of sensor networks to protect confidentiality efficiently and effectively. GossiCrypt protects data by symmetric key encryption at their source nodes and re-encryption at a randomly chosen subset of nodes en route to the sink. Furthermore, it employs key refreshing to mitigate the physical compromise of cryptographic keys. We validate GossiCrypt analytically and with simulations, showing it protects data confidentiality with probability almost one. Moreover, compared with a system that uses public-key data encryption, the energy consumption of GossiCrypt is one to three orders of magnitude lower.
Adversarial patch attack against image classification deep neural networks (DNNs), in which the attacker can inject arbitrary distortions within a bounded region of an image, is able to generate adversarial perturbations that are robust (i.e., remain adversarial in physical world) and universal (i.e., remain adversarial on any input). It is thus important to detect and mitigate such attack to ensure the security of DNNs. This work proposes Jujutsu, a technique to detect and mitigate robust and universal adversarial patch attack. Jujutsu leverages the universal property of the patch attack for detection. It uses explainable AI technique to identify suspicious features that are potentially malicious, and verify their maliciousness by transplanting the suspicious features to new images. An adversarial patch continues to exhibit the malicious behavior on the new images and thus can be detected based on prediction consistency. Jujutsu leverages the localized nature of the patch attack for mitigation, by randomly masking the suspicious features to remove adversarial perturbations. However, the network might fail to classify the images as some of the contents are removed (masked). Therefore, Jujutsu uses image inpainting for synthesizing alternative contents from the pixels that are masked, which can reconstruct the clean image for correct prediction. We evaluate Jujutsu on five DNNs on two datasets, and show that Jujutsu achieves superior performance and significantly outperforms existing techniques. Jujutsu can further defend against various variants of the basic attack, including 1) physical-world attack; 2) attacks that target diverse classes; 3) attacks that use patches in different shapes and 4) adaptive attacks.
The paper develops a new adversarial attack against deep neural networks (DNN), based on applying bio-inspired design to moving physical objects. To the best of our knowledge, this is the first work to introduce physical attacks with a moving object. Instead of following the dominating attack strategy in the existing literature, i.e., to introduce minor perturbations to a digital input or a stationary physical object, we show two new successful attack strategies in this paper. We show by superimposing several patterns onto one physical object, a DNN becomes confused and picks one of the patterns to assign a class label. Our experiment with three flapping wing robots demonstrates the possibility of developing an adversarial camouflage to cause a targeted mistake by DNN. We also show certain motion can reduce the dependency among consecutive frames in a video and make an object detector blind, i.e., not able to detect an object exists in the video. Hence in a successful physical attack against DNN, targeted motion against the system should also be considered.
Machine learning-based malware detection is known to be vulnerable to adversarial evasion attacks. The state-of-the-art is that there are no effective defenses against these attacks. As a response to the adversarial malware classification challenge organized by the MIT Lincoln Lab and associated with the AAAI-19 Workshop on Artificial Intelligence for Cyber Security (AICS2019), we propose six guiding principles to enhance the robustness of deep neural networks. Some of these principles have been scattered in the literature, but the others are introduced in this paper for the first time. Under the guidance of these six principles, we propose a defense framework to enhance the robustness of deep neural networks against adversarial malware evasion attacks. By conducting experiments with the Drebin Android malware dataset, we show that the framework can achieve a 98.49% accuracy (on average) against grey-box attacks, where the attacker knows some information about the defense and the defender knows some information about the attack, and an 89.14% accuracy (on average) against the more capable white-box attacks, where the attacker knows everything about the defense and the defender knows some information about the attack. The framework wins the AICS2019 challenge by achieving a 76.02% accuracy, where neither the attacker (i.e., the challenge organizer) knows the framework or defense nor we (the defender) know the attacks. This gap highlights the importance of knowing about the attack.