Large algebraic structures are found inside the space of sequences of continuous functions on a compact interval having the property that, the series defined by each sequence converges absolutely and uniformly on the interval but the series of the upper bounds diverges. So showing that there exist many examples satisfying the conclusion but not the hypothesis of the Weierstrass M-test.
This article addresses several longstanding misconceptions concerning Koopman operators, including the existence of lattices of eigenfunctions, common eigenfunctions between Koopman operators, and boundedness and compactness of Koopman operators, among others. Counterexamples are provided for each misconception. This manuscript also proves that the Gaussian RBFs native space only supports bounded Koopman operator corresponding to affine dynamics, which shows that the assumption of boundedness is very limiting. A framework for DMD is presented that requires only densely defined Koopman operators over reproducing kernel Hilbert spaces, and the effectiveness of this approach is demonstrated through reconstruction examples.
Let $A$ and $B$ be positive semidefinite matrices. The limit of the expression $Z_p:=(A^{p/2}B^pA^{p/2})^{1/p}$ as $p$ tends to $0$ is given by the well known Lie-Trotter-Kato formula. A similar formula holds for the limit of $G_p:=(A^p,#,B^p)^{2/p}$ as $p$ tends to $0$, where $X,#,Y$ is the geometric mean of $X$ and $Y$. In this paper we study the complementary limit of $Z_p$ and $G_p$ as $p$ tends to $infty$, with the ultimate goal of finding an explicit formula, which we call the anti Lie-Trotter formula. We show that the limit of $Z_p$ exists and find an explicit formula in a special case. The limit of $G_p$ is shown for $2times2$ matrices only.
Let $X$ be a sequence space and denote by $Z(X)$ the subset of $X$ formed by sequences having only a finite number of zero coordinates. We study algebraic properties of $Z(X)$ and show (among other results) that (for $p in [1,infty]$) $Z(ell_p)$ does not contain infinite dimensional closed subspaces. This solves an open question originally posed by R. M. Aron and V. I. Gurariy in 2003 on the linear structure of $Z(ell_infty)$. In addition to this, we also give a thorough analysis of the existing algebraic structures within the set $X setminus Z(X)$ and its algebraic genericity.
In this paper, we characterize hypercyclic sequences of weighted translation operators on an Orlicz space in the context of locally compact hypergroups.
In this paper a connection between Hamburger moment sequences and their moment subsequences is given and the determinacy of these problems are related.