No Arabic abstract
Hessian operators arising in inverse problems governed by partial differential equations (PDEs) play a critical role in delivering efficient, dimension-independent convergence for both Newton solution of deterministic inverse problems, as well as Markov chain Monte Carlo sampling of posteriors in the Bayesian setting. These methods require the ability to repeatedly perform such operations on the Hessian as multiplication with arbitrary vectors, solving linear systems, inversion, and (inverse) square root. Unfortunately, the Hessian is a (formally) dense, implicitly-defined operator that is intractable to form explicitly for practical inverse problems, requiring as many PDE solves as inversion parameters. Low rank approximations are effective when the data contain limited information about the parameters, but become prohibitive as the data become more informative. However, the Hessians for many inverse problems arising in practical applications can be well approximated by matrices that have hierarchically low rank structure. Hierarchical matrix representations promise to overcome the high complexity of dense representations and provide effective data structures and matrix operations that have only log-linear complexity. In this work, we describe algorithms for constructing and updating hierarchical matrix approximations of Hessians, and illustrate them on a number of representative inverse problems involving time-dependent diffusion, advection-dominated transport, frequency domain acoustic wave propagation, and low frequency Maxwell equations, demonstrating up to an order of magnitude speedup compared to globally low rank approximations.
The Alternating Direction Method of Multipliers (ADMM) provides a natural way of solving inverse problems with multiple partial differential equations (PDE) forward models and nonsmooth regularization. ADMM allows splitting these large-scale inverse problems into smaller, simpler sub-problems, for which computationally efficient solvers are available. In particular, we apply large-scale second-order optimization methods to solve the fully-decoupled Tikhonov regularized inverse problems stemming from each PDE forward model. We use fast proximal methods to handle the nonsmooth regularization term. In this work, we discuss several adaptations (such as the choice of the consensus norm) needed to maintain consistency with the underlining infinite-dimensional problem. We present two imaging applications inspired by electrical impedance tomography and quantitative photoacoustic tomography to demonstrate the proposed methods effectiveness.
Relying on the classical connection between Backward Stochastic Differential Equations (BSDEs) and non-linear parabolic partial differential equations (PDEs), we propose a new probabilistic learning scheme for solving high-dimensional semi-linear parabolic PDEs. This scheme is inspired by the approach coming from machine learning and developed using deep neural networks in Han and al. [32]. Our algorithm is based on a Picard iteration scheme in which a sequence of linear-quadratic optimisation problem is solved by means of stochastic gradient descent (SGD) algorithm. In the framework of a linear specification of the approximation space, we manage to prove a convergence result for our scheme, under some smallness condition. In practice, in order to be able to treat high-dimensional examples, we employ sparse grid approximation spaces. In the case of periodic coefficients and using pre-wavelet basis functions, we obtain an upper bound on the global complexity of our method. It shows in particular that the curse of dimensionality is tamed in the sense that in order to achieve a root mean squared error of order ${epsilon}$, for a prescribed precision ${epsilon}$, the complexity of the Picard algorithm grows polynomially in ${epsilon}^{-1}$ up to some logarithmic factor $ |log({epsilon})| $ which grows linearly with respect to the PDE dimension. Various numerical results are presented to validate the performance of our method and to compare them with some recent machine learning schemes proposed in Han and al. [20] and Hure and al. [37].
The characteristic feature of inverse problems is their instability with respect to data perturbations. In order to stabilize the inversion process, regularization methods have to be developed and applied. In this work we introduce and analyze the concept of filtered diagonal frame decomposition which extends the standard filtered singular value decomposition to the frame case. Frames as generalized singular system allows to better adapt to a given class of potential solutions. In this paper, we show that filtered diagonal frame decomposition yield a convergent regularization method. Moreover, we derive convergence rates under source type conditions and prove order optimality under the assumption that the considered frame is a Riesz-basis.
We analyze sparse frame based regularization of inverse problems by means of a diagonal frame decomposition (DFD) for the forward operator, which generalizes the SVD. The DFD allows to define a non-iterative (direct) operator-adapted frame thresholding approach which we show to provide a convergent regularization method with linear convergence rates. These results will be compared to the well-known analysis and synthesis variants of sparse $ell^1$-regularization which are usually implemented thorough iterative schemes. If the frame is a basis (non-redundant case), the thr
The existence and uniqueness of weak solutions to dynamical low-rank evolution problems for parabolic partial differential equations in two spatial dimensions is shown, covering also non-diagonal diffusion in the elliptic part. The proof is based on a variational time-stepping scheme on the low-rank manifold. Moreover, this scheme is shown to be closely related to practical methods for computing such low-rank evolutions.