Do you want to publish a course? Click here

The strong clique number of graphs with forbidden cycles

89   0   0.0 ( 0 )
 Added by Ringi Kim
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Given a graph $G$, the strong clique number of $G$, denoted $omega_S(G)$, is the maximum size of a set $S$ of edges such that every pair of edges in $S$ has distance at most $2$ in the line graph of $G$. As a relaxation of the renowned ErdH{o}s--Nev{s}etv{r}il conjecture regarding the strong chromatic index, Faudree et al. suggested investigating the strong clique number, and conjectured a quadratic upper bound in terms of the maximum degree. Recently, Cames van Batenburg, Kang, and Pirot conjectured a linear upper bound in terms of the maximum degree for graphs without even cycles. Namely, if $G$ is a $C_{2k}$-free graph, then $omega_S(G)leq (2k-1)Delta(G)-{2k-1choose 2}$, and if $G$ is a $C_{2k}$-free bipartite graph, then $omega_S(G)leq kDelta(G)-(k-1)$. We prove the second conjecture in a stronger form, by showing that forbidding all odd cycles is not necessary. To be precise, we show that a ${C_5, C_{2k}}$-free graph $G$ with $Delta(G)ge 1$ satisfies $omega_S(G)leq kDelta(G)-(k-1)$, when either $kgeq 4$ or $kin {2,3}$ and $G$ is also $C_3$-free. Regarding the first conjecture, we prove an upper bound that is off by the constant term. Namely, for $kgeq 3$, we prove that a $C_{2k}$-free graph $G$ with $Delta(G)ge 1$ satisfies $omega_S(G)leq (2k-1)Delta(G)+(2k-1)^2$. This improves some results of Cames van Batenburg, Kang, and Pirot.



rate research

Read More

Let $q_{min}(G)$ stand for the smallest eigenvalue of the signless Laplacian of a graph $G$ of order $n.$ This paper gives some results on the following extremal problem: How large can $q_minleft( Gright) $ be if $G$ is a graph of order $n,$ with no complete subgraph of order $r+1?$ It is shown that this problem is related to the well-known topic of making graphs bipartite. Using known classical results, several bounds on $q_{min}$ are obtained, thus extending previous work of Brandt for regular graphs. In addition, using graph blowups, a general asymptotic result about the maximum $q_{min}$ is established. As a supporting tool, the spectra of the Laplacian and the signless Laplacian of blowups of graphs are calculated.
246 - Matthew Wales 2021
The Hadwiger number $h(G)$ is the order of the largest complete minor in $G$. Does sufficient Hadwiger number imply a minor with additional properties? In [2], Geelen et al showed $h(G)geq (1+o(1))ctsqrt{ln t}$ implies $G$ has a bipartite subgraph with Hadwiger number at least $t$, for some explicit $csim 1.276dotsc$. We improve this to $h(G) geq (1+o(1))tsqrt{log_2 t}$, and provide a construction showing this is tight. We also derive improved bounds for the topological minor variant of this problem.
183 - R. Glebov , M. Krivelevich 2012
We prove that the number of Hamilton cycles in the random graph G(n,p) is n!p^n(1+o(1))^n a.a.s., provided that pgeq (ln n+ln ln n+omega(1))/n. Furthermore, we prove the hitting-time version of this statement, showing that in the random graph process, the edge that creates a graph of minimum degree 2 creates (ln n/e)^n(1+o(1))^n Hamilton cycles a.a.s.
The edge-distinguishing chromatic number (EDCN) of a graph $G$ is the minimum positive integer $k$ such that there exists a vertex coloring $c:V(G)to{1,2,dotsc,k}$ whose induced edge labels ${c(u),c(v)}$ are distinct for all edges $uv$. Previous work has determined the EDCN of paths, cycles, and spider graphs with three legs. In this paper, we determine the EDCN of petal graphs with two petals and a loop, cycles with one chord, and spider graphs with four legs. These are achieved by graph embedding into looped complete graphs.
Let $G$ be a graph whose edges are coloured with $k$ colours, and $mathcal H=(H_1,dots , H_k)$ be a $k$-tuple of graphs. A monochromatic $mathcal H$-decomposition of $G$ is a partition of the edge set of $G$ such that each part is either a single edge or forms a monochromatic copy of $H_i$ in colour $i$, for some $1le ile k$. Let $phi_{k}(n,mathcal H)$ be the smallest number $phi$, such that, for every order-$n$ graph and every $k$-edge-colouring, there is a monochromatic $mathcal H$-decomposition with at most $phi$ elements. Extending the previous results of Liu and Sousa [Monochromatic $K_r$-decompositions of graphs, Journal of Graph Theory}, 76:89--100, 2014], we solve this problem when each graph in $mathcal H$ is a clique and $nge n_0(mathcal H)$ is sufficiently large.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا