Do you want to publish a course? Click here

DP-Net: Dynamic Programming Guided Deep Neural Network Compression

318   0   0.0 ( 0 )
 Added by Dingcheng Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this work, we propose an effective scheme (called DP-Net) for compressing the deep neural networks (DNNs). It includes a novel dynamic programming (DP) based algorithm to obtain the optimal solution of weight quantization and an optimization process to train a clustering-friendly DNN. Experiments showed that the DP-Net allows larger compression than the state-of-the-art counterparts while preserving accuracy. The largest 77X compression ratio on Wide ResNet is achieved by combining DP-Net with other compression techniques. Furthermore, the DP-Net is extended for compressing a robust DNN model with negligible accuracy loss. At last, a custom accelerator is designed on FPGA to speed up the inference computation with DP-Net.

rate research

Read More

Routing problems are a class of combinatorial problems with many practical applications. Recently, end-to-end deep learning methods have been proposed to learn approximate solution heuristics for such problems. In contrast, classical dynamic programming (DP) algorithms can find optimal solutions, but scale badly with the problem size. We propose Deep Policy Dynamic Programming (DPDP), which aims to combine the strengths of learned neural heuristics with those of DP algorithms. DPDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions. We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms, making them competitive to strong alternatives such as LKH, while also outperforming other `neural approaches for solving TSPs and VRPs with 100 nodes.
320 - Moritz Wolter 2020
Wavelets are well known for data compression, yet have rarely been applied to the compression of neural networks. This paper shows how the fast wavelet transform can be used to compress linear layers in neural networks. Linear layers still occupy a significant portion of the parameters in recurrent neural networks (RNNs). Through our method, we can learn both the wavelet bases and corresponding coefficients to efficiently represent the linear layers of RNNs. Our wavelet compressed RNNs have significantly fewer parameters yet still perform competitively with the state-of-the-art on synthetic and real-world RNN benchmarks. Wavelet optimization adds basis flexibility, without large numbers of extra weights. Source code is available at https://github.com/v0lta/Wavelet-network-compression.
One of the biggest issues in deep learning theory is the generalization ability of networks with huge model size. The classical learning theory suggests that overparameterized models cause overfitting. However, practically used large deep models avoid overfitting, which is not well explained by the classical approaches. To resolve this issue, several attempts have been made. Among them, the compression based bound is one of the promising approaches. However, the compression based bound can be applied only to a compressed network, and it is not applicable to the non-compressed original network. In this paper, we give a unified frame-work that can convert compression based bounds to those for non-compressed original networks. The bound gives even better rate than the one for the compressed network by improving the bias term. By establishing the unified frame-work, we can obtain a data dependent generalization error bound which gives a tighter evaluation than the data independent ones.
Many DNN-enabled vision applications constantly operate under severe energy constraints such as unmanned aerial vehicles, Augmented Reality headsets, and smartphones. Designing DNNs that can meet a stringent energy budget is becoming increasingly important. This paper proposes ECC, a framework that compresses DNNs to meet a given energy constraint while minimizing accuracy loss. The key idea of ECC is to model the DNN energy consumption via a novel bilinear regression function. The energy estimate model allows us to formulate DNN compression as a constrained optimization that minimizes the DNN loss function over the energy constraint. The optimization problem, however, has nontrivial constraints. Therefore, existing deep learning solvers do not apply directly. We propose an optimization algorithm that combines the essence of the Alternating Direction Method of Multipliers (ADMM) framework with gradient-based learning algorithms. The algorithm decomposes the original constrained optimization into several subproblems that are solved iteratively and efficiently. ECC is also portable across different hardware platforms without requiring hardware knowledge. Experiments show that ECC achieves higher accuracy under the same or lower energy budget compared to state-of-the-art resource-constrained DNN compression techniques.
Deep neural networks (DNNs) have become the state-of-the-art technique for machine learning tasks in various applications. However, due to their size and the computational complexity, large DNNs are not readily deployable on edge devices in real-time. To manage complexity and accelerate computation, network compression techniques based on pruning and quantization have been proposed and shown to be effective in reducing network size. However, such network compression can result in irregular matrix structures that are mismatched with modern hardware-accelerated platforms, such as graphics processing units (GPUs) designed to perform the DNN matrix multiplications in a structured (block-based) way. We propose MPDCompress, a DNN compression algorithm based on matrix permutation decomposition via random mask generation. In-training application of the masks molds the synaptic weight connection matrix to a sub-graph separation format. Aided by the random permutations, a hardware-desirable block matrix is generated, allowing for a more efficient implementation and compression of the network. To show versatility, we empirically verify MPDCompress on several network models, compression rates, and image datasets. On the LeNet 300-100 model (MNIST dataset), Deep MNIST, and CIFAR10, we achieve 10 X network compression with less than 1% accuracy loss compared to non-compressed accuracy performance. On AlexNet for the full ImageNet ILSVRC-2012 dataset, we achieve 8 X network compression with less than 1% accuracy loss, with top-5 and top-1 accuracies of 79.6% and 56.4%, respectively. Finally, we observe that the algorithm can offer inference speedups across various hardware platforms, with 4 X faster operation achieved on several mobile GPUs.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا