Two-dimensional metallic ferroelectricity in PbTe monolayer by electrostatic doping


Abstract in English

Polar metals characterized by the simultaneous coexistence of ferroelectric distortions and metallicity have attracted tremendous attention. Developing such materials at low dimensions remains challenging since both conducting electrons and reduced dimensions are supposed to quench ferroelectricity. Here, based on first-principles calculations, we report the discovery of ferroelectric behavior in two-dimensional (2D) metallic materials with electrostatic doping, even though ferroelectricity is unconventional at the atomic scale. We reveal that PbTe monolayer is intrinsic ferroelectrics with pronounced out-of-plane electric polarization originated from its non-centrosymmetric buckled structure. The ferroelectric distortions can be preserved with carriers doping in the ferroelectric monolayer, which thus enables the doped PbTe monolayer to act as a 2D polar metal. With an effective Hamiltonian extracted from the parametrized energy space, we found that the elastic-polar mode interaction is of great importance for the existence of robust polar instability in the doped system. The application of this doping strategy is not specific to the present crystal, but is rather general to other 2D ferroelectrics to bring about the fascinating metallic ferroelectric properties. Our findings thus change conventional acknowledge in 2D materials and will facilitate the development of multifunctional material in low dimensions.

Download