Do you want to publish a course? Click here

Topology of atomically thin soft ferroelectric membranes at finite temperature

145   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

One account of two-dimensional (2D) structural transformations in 2D ferroelectrics predicts an evolution from a structure with Pnm2$_1$ symmetry into a structure with square P4/nmm symmetry and is consistent with experimental evidence, while another argues for a transformation into a structure with rectangular Pnmm symmetry. An analysis of the assumptions made in these models is provided here, and six fundamental results concerning these transformations are contributed as follows: (i) Softened phonon modes produce rotational modes in these materials. (ii) The transformation to a structure with P4/nmm symmetry occurs at the lowest critical temperature $T_c$. (iii) The hypothesis that one unidirectional optical vibrational mode underpins the 2D transformation is unwarranted. (iv) Being successively more constrained, a succession of critical temperatures ($T_c<T_c<T_c$) occurs in going from molecular dynamics calculations with the NPT and NVT ensembles onto the model with unidirectional oscillations. (v) The choice of exchange-correlation functional impacts the estimate of the critical temperature. (vi) Crucially, the correct physical picture of these transformations is one in which rotational modes confer a topological character to the 2D transformation via the proliferation of vortices.



rate research

Read More

The finite-temperature magnetism of a monolayer on a bcc (110) surface was examined using a model Hamiltonian containing ferromagnetic or antiferromagnetic exchange interactions, Dzyaloshinsky-Moriya interactions and easy-axis on-site anisotropy. We examined the competition between the collinear ground state parallel to the easy axis and the spin spiral state in the plane perpendicular to this axis preferred by the Dzyaloshinsky-Moriya interaction. Using approximative methods to calculate the magnon spectrum at finite temperatures, it was found that even if the ground state is collinear, increasing the Dzyaloshinsky-Moriya interaction strongly decreases the critical temperature where this collinear order disappears. Using atomistic spin dynamics simulations it was found that at this critical temperature the system transforms into the non-collinear state. Including external magnetic field helps stabilising the ferromagnetic state. An effect due to the finite size of the magnetic monolayer was included in the model by considering a different value for the anisotropy at the edges of the monolayer. This effect was shown to stabilize the spin spiral state by fixing the phase at the ends of the stripe.
We fabricate van der Waals heterostructure devices using few unit cell thick Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ for magnetotransport measurements. The superconducting transition temperature and carrier density in atomically thin samples can be maintained to close to that of the bulk samples. As in the bulk sample, the sign of the Hall conductivity is found to be opposite to the normal state near the transition temperature but with a drastic enlargement of the region of Hall sign reversal in the temperature-magnetic field phase diagram as the thickness of samples decreases. Quantitative analysis of the Hall sign reversal based on the excess charge density in the vortex core and superconducting fluctuations suggests a renormalized superconducting gap in atomically thin samples at the 2-dimensional limit.
67 - L. Mogg , G.-P. Hao , S. Zhang 2019
Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons. This seemed to suggest that only one-atom-thick crystals could be used as proton conducting membranes. Here we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one-two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials, which extends from 100 C to 500 C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm-2 at 500 C, well above the current requirements for the industry roadmap. We attribute the fast proton permeation to 5 A-wide tubular channels that perforate micas crystal structure which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals with similar nm-scale channels, which could help close the materials gap in proton-conducting applications.
A thin liquid film with non-zero curvature at its free surface spontaneously flows to reach a flat configuration, a process driven by Laplace pressure gradients and resisted by the liquids viscosity. Inspired by recent progresses on the dynamics of liquid droplets on soft substrates, we here study the relaxation of a viscous film supported by an elastic foundation. Experiments involve thin polymer films on elastomeric substrates, where the dynamics of the liquid-air interface is monitored using atomic force microscopy. A theoretical model that describes the coupled evolution of the solid-liquid and the liquid-air interfaces is also provided. In this soft-levelling configuration, Laplace pressure gradients not only drive the flow, but they also induce elastic deformations on the substrate that affect the flow and the shape of the liquid-air interface itself. This process represents an original example of elastocapillarity that is not mediated by the presence of a contact line. We discuss the impact of the elastic contribution on the levelling dynamics and show the departure from the classical self-similarities and power laws observed for capillary levelling on rigid substrates.
Soft glassy materials are out of thermodynamic equilibrium and show time dependent slowing down of the relaxation dynamics. Under such situation these materials follow Boltzmann superposition principle only in the effective time domain, wherein time dependent relaxation processes are scaled by a constant relaxation time. In this work we extend effective time framework to successfully demonstrate time - temperature superposition of creep and stress relaxation data of a model soft glassy system comprised of clay suspension. Such superposition is possible when average relaxation time of the material changes with time and temperature without affecting shape of the spectrum. We show that variation in relaxation time as a function of temperature facilitates prediction of long and short time rheological behavior through time - temperature superposition from the experiments carried out over experimentally accessible timescales.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا