Do you want to publish a course? Click here

A new detector for the beam energy measurement in proton therapy: a feasibility study

70   0   0.0 ( 0 )
 Added by Simona Giordanengo
 Publication date 2020
  fields Physics
and research's language is English
 Authors A. Vignati




Ask ChatGPT about the research

Fast procedures for the beam quality assessment and for the monitoring of beam energy modulations during the irradiation are among the most urgent improvements in particle therapy. Indeed, the online measurement of the particle beam energy could allow assessing the range of penetration during treatments, encouraging the development of new dose delivery techniques for moving targets. Towards this end, the proof of concept of a new device, able to measure in a few seconds the energy of clinical proton beams (from 60 to 230 MeV) from the Time of Flight (ToF) of protons, is presented. The prototype consists of two Ultra Fast Silicon Detector (UFSD) pads, featuring an active thickness of 80 um and a sensitive area of 3 x 3 mm2, aligned along the beam direction in a telescope configuration, connected to a broadband amplifier and readout by a digitizer. Measurements were performed at the Centro Nazionale di Adroterapia Oncologica (CNAO, Pavia, Italy), at five different clinical beam energies and four distances between the sensors (from 7 to 97 cm) for each energy. In order to derive the beam energy from the measured average ToF, several systematic effects were considered, Monte Carlo simulations were developed to validate the method and a global fit approach was adopted to calibrate the system. The results were benchmarked against the energy values obtained from the water equivalent depths provided by CNAO. Deviations of few hundreds of keV have been achieved for all considered proton beam energies for both 67 and 97 cm distances between the sensors and few seconds of irradiation were necessary to collect the required statistics. These preliminary results indicate that a telescope of UFSDs could achieve in a few seconds the accuracy required for the clinical application and therefore encourage further investigations towards the improvement and the optimization of the present prototype.



rate research

Read More

Purpose: The purpose of this work was to provide a flexible platform for FLASH research with protons by adapting a former clinical pencil beam scanning gantry to irradiations with ultrahigh dose rates. Methods: PSI Gantry 1 treated patients until December 2018. We optimized the beamline parameters to transport the 250 MeV beam extracted from the PSI COMET accelerator to the treatment room, maximizing the transmission of beam intensity to the sample. We characterized a dose monitor on the gantry to ensure good control of the dose, delivered in spot-scanning mode. We characterized the beam for different dose rates and field sizes for transmission irradiations. We explored scanning possibilities in order to enable conformal irradiations or transmission irradiations of large targets (with transverse scanning). Results: We achieved a transmission of 86 % from the cyclotron to the treatment room. We reached a peak dose rate of 9000 Gy/s at 3 mm water equivalent depth, along the central axis of a single pencil beam. Field sizes of up to 5x5 mm$^{2}$ were achieved for single spot FLASH irradiations. Fast transverse scanning allowed to cover a field of 16x1.2 cm$^{2}$. With the use of a nozzle-mounted range shifter we are able to span depths in water ranging from 19.6 to 37.9 cm. Various dose levels were delivered with a precision within less than 1 %. Conclusions: We have realized a proton FLASH irradiation setup able to investigate continuously a wide dose rate spectrum, from 1 to 9000 Gy/s in a single spot irradiation as well as in the pencil beam scanning mode. As such, we have developed a versatile test bench for FLASH research.
Proton beam therapy can potentially offer improved treatment for cancers of the head and neck and in paediatric patients. There has been a sharp uptake of proton beam therapy in recent years as improved delivery techniques and patient benefits are observed. However, treatments are currently planned using conventional x-ray CT images due to the absence of devices able to perform high quality proton computed tomography (pCT) under realistic clinical conditions. A new plastic-scintillator-based range telescope concept, named ASTRA, is proposed here as the energy tagging detector of a pCT system. Simulations conducted using Geant4 yield an expected energy resolution of 0.7% and have demonstrated the ability of ASTRA to track multiple protons simultaneously. If calorimetric information is used the energy resolution could be further improved to about 0.5%. Assuming clinical beam parameters the system is expected to be able to efficiently reconstruct at least, 10$^8$ protons/s. The performance of ASTRA has been tested by imaging phantoms to evaluate the image contrast and relative stopping power reconstruction.
When using superconducting (SC) magnets in a gantry for proton therapy, the gantry will benefit from some reduction in size and a large reduction in weight. In this contribution we show an important additional advantage of SC magnets in proton therapy treatments. We present the design of a gantry with a SC bending section and achromatic beam optics with a very large beam momentum acceptance of $pm15%$. Due to the related very large energy acceptance, approximately 70% of the treatments can be performed without changing the magnetic field for synchronization with energy modulation. In our design this is combined with a 2D lateral scanning system and a fast degrader mounted in the gantry, so that this gantry will be able to perform pencil beam scanning with very rapid energy variations at the patient, allowing a significant reduction of the irradiation time. We describe the iterative process we have applied to design the magnets and the beam transport, for which we have used different codes. COSY Infinity and OPAL have been used to design the beam transport optics and to track the particles in the magnetic fields, which are produced by the magnets designed in Opera. With beam optics calculations we have derived an optimal achromatic beam transport with the large momentum acceptance of the proton pencil beam and we show the agreement with particle tracking calculations in the 3D magnetic field map. A new cyclotron based facility with this gantry will have a significantly smaller footprint, since one can refrain from the degrader and energy selection system behind the cyclotron. In the treatments, this gantry will enable a very fast proton beam delivery sequence, which may be of advantage for treatments in moving tissue.
PET imaging is a non-invasive technique for particle range verification in proton therapy. It is based on measuring the beta+ annihilations caused by nuclear interactions of the protons in the patient. In this work we present measurements for proton range verification in phantoms, performed at the CNAO particle therapy treatment center in Pavia, Italy, with our 10 x 10 cm^2 planar PET prototype DoPET. PMMA phantoms were irradiated with mono-energetic proton beams and clinical treatment plans, and PET data were acquired during and shortly after proton irradiation. We created 1-D profiles of the beta+ activity along the proton beam-axis, and evaluated the difference between the proximal rise and the distal fall-off position of the activity distribution. A good agreement with FLUKA Monte Carlo predictions was obtained. We also assessed the system response when the PMMA phantom contained an air cavity. The system was able to detect these cavities quickly after irradiation.
132 - William Parke , Dalong Pang 2021
Therapeutic protons acting on O18-substituted thymidine increase cytotoxicity in radio-resistant human cancer cells. We consider here the physics behind the irradiation during proton beam therapy and diagnosis using O18-enriched thymine in DNA, with attention to the effect of the presence of thymine-18 on cancer cell death.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا